14 research outputs found

    Copper-dependent protein-protein interactions studied by yeast two-hybrid analysis

    No full text
    An important step in copper homeostasis is delivery of copper to a specific P-type ATPase in the Golgi apparatus (Ccc2 in yeast, ATP7A and ATP7B in humans) by a small copper chaperone protein (Atx1 in yeast, ATOX1 in humans). Atx1 and ATOX1 both contain an MXCXXC motif that is also present in Ccc2 (two motifs) and ATP7A/B (six motifs). Protein–protein interactions probably require coordination of one Cu(I) by cysteines from both MXCXXC motifs. We applied yeast two-hybrid analysis to screen systematically all possible interactions between MXCXXC-containing domains in these proteins. We demonstrate that ATOX1 and Atx1 preferentially interact with domains 2 and 4 of ATP7B and that Atx1 interacts with both Ccc2 domains. All combinations show a remarkable bell-shaped dependency on copper concentration that is maximal just below normal copper levels. Our results suggest that yeast two-hybrid analysis can be used to study the intracellular copper status of a cell

    Molecular pathogenesis of Wilson and Menkes disease: Correlation of mutations with molecular defects and disease phenotypes

    No full text
    The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper‐transporting P‐type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper‐induced trafficking, post‐translational modifications and protein–protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders

    COMMD1 expression is controlled by critical residues that determine XIAP binding

    No full text
    COMM domain-containing (or COMMD) proteins participate in several cellular processes, ranging from NF-ÎșB regulation, copper homeostasis, sodium transport and adaptation to hypoxia. The best studied member of this family is COMMD1, but relatively little is known about its regulation, except that XIAP functions as its ubiquitin ligase. In this study, we identified that the COMM domain of COMMD1 is required for its interaction with XIAP, and other COMM domain containing proteins can similarly interact with IAPs. Two conserved leucine repeats within the COMM domain were found to be critically required for XIAP binding. A COMMD1 mutant unable to bind to XIAP demonstrated complete loss of basal ubiquitination and great stabilization of the protein. Underscoring the importance of IAP-mediated ubiquitination, we found that long-term expression of wild-type COMMD1 results in nearly physiologic protein levels due to increased ubiquitination, but this regulatory event is circumvented when expressing a mutant form that cannot bind XIAP. Altogether, our findings indicate that COMMD1 expression is primarily controlled by protein ubiquitination and its interaction with IAP proteins plays an essential role

    Ratiometric fluorescent sensor proteins with subnanomolar affinity for Zn(II) based on copper chaperone domains

    No full text
    The ability to image the concn. of transition metals in living cells in real time is important for further understanding of transition metal homeostasis and its involvement in diseases. The goal of this study was to develop a genetically encoded FRET-based sensor for copper(I) based on the copper-induced dimerization of two copper binding domains involved in human copper homeostasis, Atox1 and the fourth domain of ATP7B (WD4). A sensor has been constructed by linking these copper binding domains to donor and acceptor fluorescent protein domains. Energy transfer is obsd. in the presence of Cu(I), but the Cu(I)-bridged complex is easily disrupted by low mol. wt. thiols such as DTT and glutathione. To our surprise, energy transfer is also obsd. in the presence of very low concns. of Zn(II) (10-10 M), even in the presence of DTT. Zn(II) is able to form a stable complex by binding to the cysteines present in the conserved MXCXXC motif of the two copper binding domains. Co(II), Cd(II), and Pb(II) also induce an increase in FRET, but other, physiol. relevant metals are not able to mediate an interaction. The Zn(II) binding properties have been tuned by mutation of the copper-binding motif to the zinc-binding consensus sequence MDCXXC found in the zinc transporter ZntA. The present system allows the mol. mechanism of copper and zinc homeostasis to be studied under carefully controlled conditions in soln. It also provides an attractive platform for the further development of genetically encoded FRET-based sensors for Zn(II) and other transition metal ions

    Monitoring bile acid transport in single living cells using a genetically encoded Förster resonance energy transfer sensor

    No full text
    Bile acids are pivotal for the absorption of dietary lipids and vitamins and function as important signaling molecules in metabolism. Here, we describe a genetically encoded fluorescent bile acid sensor (BAS) that allows for spatiotemporal monitoring of bile acid transport in single living cells. Changes in concentration of multiple physiological and pathophysiological bile acid species were detected as robust changes in Förster resonance energy transfer (FRET) in a range of cell types. Specific subcellular targeting of the sensor demonstrated rapid influx of bile acids into the cytoplasm and nucleus, but no FRET changes were observed in the peroxisomes. Furthermore, expression of the liver fatty acid binding protein reduced the availability of bile acids in the nucleus. The sensor allows for single cell visualization of uptake and accumulation of conjugated bile acids, mediated by the Na+-taurocholate cotransporting protein (NTCP). In addition, cyprinol sulphate uptake, mediated by the putative zebrafish homologue of the apical sodium bile acid transporter, was visualized using a sensor based on the zebrafish farnesoid X receptor. The reversible nature of the sensor also enabled measurements of bile acid efflux in living cells, and expression of the organic solute transporter aß (OSTaß) resulted in influx and efflux of conjugated chenodeoxycholic acid. Finally, combined visualization of bile acid uptake and fluorescent labeling of several NTCP variants indicated that the sensor can also be used to study the functional effect of patient mutations in genes affecting bile acid homeostasis. Conclusion: A genetically encoded fluorescent BAS was developed that allows intracellular imaging of bile acid homeostasis in single living cells in real tim

    A flippase-independent function of ATP8B1, the protein affected in familial intrahepatic cholestasis type1, is required for apical protein expression and microvillus formation in polarized epithelial cells

    No full text
    Mutations in ATP8B1 cause familial intrahepatic cholestasis type 1, a spectrum of disorders characterized by intrahepatic cholestasis, reduced growth, deafness, and diarrhea. ATP8B1 belongs to the P4 P-type adenosine triphosphatase (ATPase) family of putative aminophospholipid translocases, and loss of aminophospholipid asymmetry in the canalicular membranes of ATP8B1-deficient liver cells has been proposed as the primary cause of impaired bile salt excretion. To explore the origin of the hepatic and extrahepatic symptoms associated with ATP8B1 deficiency, we investigated the impact of ATP8B1 depletion on the domain-specific aminophospholipid translocase activities and polarized organization of polarized epithelial Caco-2 cells. Caco-2 cells were stably transfected with short hairpin RNA constructs to block ATP8B1 expression. Aminophospholipid translocase activity was assessed using spin-labeled phospholipids. The polarized organization of these cells was determined by pulse-chase analysis, cellfractionation, immunocytochemistry, and transmission electron microscopy. ATP8B1 was abundantly expressed in the apical membrane of Caco-2 cells, and its expression was markedly induced during differentiation and polarization. Blocking ATP8B1 expression by RNA interference (RNAi) affected neither aminophospholipid transport nor the asymmetrical distribution of aminophospholipids across the apical bilayer. Nonetheless, ATP8B1-depleted Caco-2 cells displayed profound perturbations in apical membrane organization, including a disorganized apical actin cytoskeleton, a loss in microvilli, and a posttranscriptional defect in apical protein expression. Conclusion: Our findings point to a critical role of ATP8B1 in apical membrane organization that is unrelated to its presumed aminophospholipid translocase activity, yet potentially relevant for the development of cholestasis and the manifestation of extrahepatic features associated with ATP8B1 deficienc

    Distinct Wilson's Disease Mutations in ATP7B Are Associated With Enhanced Binding to COMMD1 and Reduced Stability of ATP7B

    No full text
    Background & Aims: Wilson's disease (WD) is characterized by hepatic copper overload and caused by mutations in the gene encoding the copper-transporting P-type adenosine triphospharase (ATPase) ATP7B. ATP7B interacts with COMMD1, a protein that is deleted in Bedlington terriers with hereditary copper toxicosis. Here we characterized the implications of the interaction between COMMD1 and ATP7B in relation to the pathogenesis of WD. Methods: Glutathione-S-transferase pull-down experiments, co-immunoprecipitations, immunofluorescence microscopy, site-directed mutagenesis, and biosynthetic labeling experiments were performed to characterize the interaction between COMMD1 and ATP7B and the effects of WD causing mutations. Results: COMMD1 specifically interacted with the amino-terminal region of ATP7B. This interaction was independent of intracellular copper levels and of the expression of the copper chaperone ATOX1. Four WD patient-derived mutations in this region of ATP7B significantly increased its binding to COMMD1. Two of these mutations also resulted in mislocalization and increased degradation rate of ATP7B. Although COMMD1 did not affect copper-induced trafficking of ATP7B, it markedly decreased the stability of newly synthesized ATP7B. Conclusions: Our data implicate COMMD1 in the pathogenesis of WD and indicate that COMMD1 exerts its regulatory role in copper homeostasis through the regulation of ATP7B stability
    corecore