8 research outputs found

    Uncertainty associated with the gage factor in three-element strain gage rosette measurements

    No full text

    Overexpression of Gremlin-1 in patients with Loeys-Dietz syndrome: Implications on pathophysiology and early disease detection

    Get PDF
    BACKGROUNDS: The Loeys-Dietz syndrome (LDS) is an inherited connective tissue disorder caused by mutations in the transforming growth factor β (TGF-β) receptors TGFBR1 or TGFBR2. Most patients with LDS develop severe aortic aneurysms resulting in early need of surgical intervention. In order to gain further insight into the pathophysiology of the disorder, we investigated circulating outgrowth endothelial cells (OEC) from the peripheral blood of LDS patients from a cohort of 23 patients including 6 patients with novel TGF-β receptor mutations. METHODS AND RESULTS: We performed gene expression profiling of OECs using microarray analysis followed by quantitative PCR for verification of gene expression. Compared to OECs of age- and sex-matched healthy controls, OECs isolated from three LDS patients displayed altered expression of several genes belonging to the TGF-β pathway, especially those affecting bone morphogenic protein (BMP) signalling including BMP2, BMP4 and BMPR1A. Gene expression of BMP antagonist Gremlin-1 (GREM1) showed the most prominent up-regulation. This increase was confirmed at the protein level by immunoblotting of LDS-OECs. In immunohistochemistry, abundant Gremlin-1 protein expression could be verified in endothelial cells as well as smooth muscle cells within the arterial media. Furthermore, Gremlin-1 plasma levels of LDS patients were significantly elevated compared to healthy control subjects. CONCLUSIONS: These findings open new avenues in the understanding of the pathogenesis of Loeys-Dietz syndrome and the development of new diagnostic serological methods for early disease detection

    Combined inhibition of receptor tyrosine and p21-activated kinases as a therapeutic strategy in childhood ALL.

    No full text
    Receptor tyrosine kinase (RTK)-dependent signaling has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL) of childhood. However, the RTK-dependent signaling state and its interpretation with regard to biological behavior are often elusive. To decipher signaling circuits that link RTK activity with biological output in vivo, we established patient-derived xenograft ALL (PDX-ALL) models with dependencies on fms-like tyrosine kinase 3 (FLT3) and platelet-derived growth factor receptor β (PDGFRB), which were interrogated by phosphoproteomics using iTRAQ mass spectrometry. Signaling circuits were determined by receptor type and cellular context with few generic features, among which we identified group I p21-activated kinases (PAKs) as potential therapeutic targets. Growth factor stimulation markedly increased catalytic activities of PAK1 and PAK2. RNA interference (RNAi)-mediated or pharmacological inhibition of PAKs using allosteric or adenosine triphosphate (ATP)-competitive compounds attenuated cell growth and increased apoptosis in vitro. Notably, PAK1- or PAK2-directed RNAi enhanced the antiproliferative effects of the type III RTK and protein kinase C inhibitor midostaurin. Treatment of FLT3- or PDGFRB-dependent ALLs with ATP-competitive PAK inhibitors markedly decreased catalytic activities of both PAK isoforms. In FLT3-driven ALL, this effect was augmented by coadministration of midostaurin resulting in synergistic effects on growth inhibition and apoptosis. Finally, combined treatment of PDX-ALL with the ATP-competitive group I PAK inhibitor FRAX486 and midostaurin in vivo significantly prolonged leukemia progression-free survival compared with midostaurin monotherapy or control. Our study establishes PAKs as potential downstream targets in RTK-dependent ALL of childhood, the inhibition of which might help prevent the selection or acquisition of resistance mutations toward tyrosine kinase inhibitors

    Letter of Intent by the Solenoidal Detector Collaboration to construct and operate a detector at the Superconducting Super Collider

    No full text
    corecore