2 research outputs found

    Validity of a Power Law Approach to Model Tablet Strength as a Function of Compaction Pressure

    Get PDF
    Designing quality into dosage forms should not be only based on qualitative or purely heuristic relations. A knowledge space must be generated, in which at least some mechanistic understanding is included. This is of particular interest for critical dosage form parameters like the strength of tablets. In line with this consideration, the scope of the work is to explore the validity range of a theoretically derived power law for the tensile strength of tablets. Different grades of microcrystalline cellulose and lactose, as well as mixtures thereof, were used to compress model tablets. The power law was found to hold true in a low pressure range, which agreed with theoretical expectation. This low pressure range depended on the individual material characteristics, but as a rule of thumb, the tablets having a porosity of more than about 30% or being compressed below 100MPa were generally well explained by the tensile strength relationship. Tablets at higher densities were less adequately described by the theory that is based on large-scale heterogeneity of the relevant contact points in the compact. Tablets close to the unity density therefore require other theoretical approaches. More research is needed to understand tablet strength in a wider range of compaction pressure

    Validity of a Power Law Approach to Model Tablet Strength as a Function of Compaction Pressure

    No full text
    Designing quality into dosage forms should not be only based on qualitative or purely heuristic relations. A knowledge space must be generated, in which at least some mechanistic understanding is included. This is of particular interest for critical dosage form parameters like the strength of tablets. In line with this consideration, the scope of the work is to explore the validity range of a theoretically derived power law for the tensile strength of tablets. Different grades of microcrystalline cellulose and lactose, as well as mixtures thereof, were used to compress model tablets. The power law was found to hold true in a low pressure range, which agreed with theoretical expectation. This low pressure range depended on the individual material characteristics, but as a rule of thumb, the tablets having a porosity of more than about 30% or being compressed below 100 MPa were generally well explained by the tensile strength relationship. Tablets at higher densities were less adequately described by the theory that is based on large-scale heterogeneity of the relevant contact points in the compact. Tablets close to the unity density therefore require other theoretical approaches. More research is needed to understand tablet strength in a wider range of compaction pressures
    corecore