3 research outputs found

    Active on-chip dispersion control using a tunable silicon Bragg grating

    Get PDF
    Actively controllable dispersion in on-chip photonic devices is challenging to implement compared with free space optical components where mechanical degrees of freedom can be employed. Here we present a method by which continuously tunable group delay control is achieved by modulating the refractive index profile of a silicon Bragg grating using thermo-optic effects. A simple thermal heater element is used to create tunable thermal gradients along the grating length, inducing chirped group delay profiles. Both effective blue and red chirp are realised using a single on-chip device over nanometre scale bandwidths. Group delay slopes are continuously tunable over a few ps/nm range from red to blue chirp, compatible with on-chip dispersion compensation for telecommunications picosecond pulse systems

    Automated nanoscale absolute accuracy alignment system for transfer printing

    Get PDF
    The heterogeneous integration of micro- and nanoscale devices with on-chip circuits and waveguide platforms is a key enabling technology, with wide-ranging applications in areas including telecommunications, quantum information processing, and sensing. Pick and place integration with absolute positional accuracy at the nanoscale has been previously demonstrated for single proof-of-principle devices. However, to enable scaling of this technology for realization of multielement systems or high throughput manufacturing, the integration process must be compatible with automation while retaining nanoscale accuracy. In this work, an automated transfer printing process is realized by using a simple optical microscope, computer vision, and high accuracy translational stage system. Automatic alignment using a cross-correlation image processing method demonstrates absolute positional accuracy of transfer with an average offset of <40 nm (3σ < 390 nm) for serial device integration of both thin film silicon membranes and single nanowire devices. Parallel transfer of devices across a 2 × 2 mm 2 area is demonstrated with an average offset of <30 nm (3σ < 705 nm). Rotational accuracy better than 45 mrad is achieved for all device variants. Devices can be selected and placed with high accuracy on a target substrate, both from lithographically defined positions on their native substrate or from a randomly distributed population. These demonstrations pave the way for future scalable manufacturing of heterogeneously integrated chip systems

    Transfer-printing enables multi-material assembly of integrated photonic systems

    Get PDF
    Hybrid integration of photonic membrane and nanowire devices from multiple material platforms is demonstrated using high-accuracy transfer printing. The deterministic assembly technique enables serially printed devices with separations as low as 100 nm
    corecore