78 research outputs found

    Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy

    Get PDF
    High activity of histone deacetylases (HDACs) causes epigenetic alterations associated with malignant cell behaviour. Consequently, HDAC inhibitors have entered late-phase clinical trials as new antineoplastic drugs. However, little is known about expression and function of specific HDAC isoforms in human tumours including prostate cancer. We investigated the expression of class I HDACs in 192 prostate carcinomas by immunohistochemistry and correlated our findings to clinicopathological parameters including follow-up data. Class I HDAC isoforms were strongly expressed in the majority of the cases (HDAC1: 69.8%, HDAC2: 74%, HDAC3: 94.8%). High rates of HDAC1 and HDAC2 expression were significantly associated with tumour dedifferentiation. Strong expression of all HDACs was accompanied by enhanced tumour cell proliferation. In addition, HDAC2 was an independent prognostic marker in our prostate cancer cohort. In conclusion, we showed that the known effects of HDACs on differentiation and proliferation of cancer cells observed in vitro can also be confirmed in vivo. The class I HDAC isoforms 1, 2 and 3 are differentially expressed in prostate cancer, which might be important for upcoming studies on HDAC inhibitors in this tumour entity. Also, the highly significant prognostic value of HDAC2 clearly deserves further study

    Clinicopathological Significance and Prognostic Value of DNA Methyltransferase 1, 3a, and 3b Expressions in Sporadic Epithelial Ovarian Cancer

    Get PDF
    Altered DNA methylation of tumor suppressor gene promoters plays a role in human carcinogenesis and DNA methyltransferases (DNMTs) are responsible for it. This study aimed to determine aberrant expression of DNMT1, DNMT3a, and DNMT3b in benign and malignant ovarian tumor tissues for their association with clinicopathological significance and prognostic value. A total of 142 ovarian cancers and 44 benign ovarian tumors were recruited for immunohistochemical analysis of their expression. The data showed that expression of DNMT1, DNMT3a, and DNMT3b was observed in 76 (53.5%), 92 (64.8%) and 79 (55.6%) of 142 cases of ovarian cancer tissues, respectively. Of the serious tumors, DNMT3a protein expression was significantly higher than that in benign tumor samples (P = 0.001); DNMT3b was marginally significant down regulated in ovarian cancers compared to that of the benign tumors (P = 0.054); DNMT1 expression has no statistical difference between ovarian cancers and benign tumor tissues (P = 0.837). Of the mucious tumors, the expression of DNMT3a, DNMT3b, and DNMT1 was not different between malignant and benign tumors. Moreover, DNMT1 expression was associated with DNMT3b expression (P = 0.020, r = 0.195). DNMT1 expression was associated with age of the patients, menopause status, and tumor localization, while DNMT3a expression was associated with histological types and serum CA125 levels and DNMT3b expression was associated with lymph node metastasis. In addition, patients with DNMT1 or DNMT3b expression had a trend of better survival than those with negative expression. Co-expression of DNMT1 and DNMT3b was significantly associated with better overall survival (P = 0.014). The data from this study provided the first evidence for differential expression of DNMTs proteins in ovarian cancer tissues and their associations with clinicopathological and survival data in sporadic ovarian cancer patients

    A Proof-Of-Principle Study of Epigenetic Therapy Added to Neoadjuvant Doxorubicin Cyclophosphamide for Locally Advanced Breast Cancer

    Get PDF
    BACKGROUND: Aberrant DNA methylation and histone deacetylation participate in cancer development and progression; hence, their reversal by inhibitors of DNA methylation and histone deacetylases (HDACs) is at present undergoing clinical testing in cancer therapy. As epigenetic alterations are common to breast cancer, in this proof-of-concept study demethylating hydralazine, plus the HDAC inhibitor magnesium valproate, were added to neoadjuvant doxorubicin and cyclophosphamide in locally advanced breast cancer to assess their safety and biological efficacy. METHODOLOGY: This was a single-arm interventional trial on breast cancer patients (ClinicalTrials.gov Identifier: NCT00395655). After signing informed consent, patients were typed for acetylator phenotype and then treated with hydralazine at 182 mg for rapid-, or 83 mg for slow-acetylators, and magnesium valproate at 30 mg/kg, starting from day –7 until chemotherapy ended, the latter consisting of four cycles of doxorubicin 60 mg/m(2) and cyclophosphamide 600 mg/m(2) every 21 days. Core-needle biopsies were taken from primary breast tumors at diagnosis and at day 8 of treatment with hydralazine and valproate. MAIN FINDINGS: 16 patients were included and received treatment as planned. All were evaluated for clinical response and toxicity and 15 for pathological response. Treatment was well-tolerated. The most common toxicity was drowsiness grades 1–2. Five (31%) patients had clinical CR and eight (50%) PR for an ORR of 81%. No patient progressed. One of 15 operated patients (6.6%) had pathological CR and 70% had residual disease <3 cm. There was a statistically significant decrease in global 5(m)C content and HDAC activity. Hydralazine and magnesium valproate up- and down-regulated at least 3-fold, 1,091 and 89 genes, respectively. CONCLUSIONS: Hydralazine and magnesium valproate produce DNA demethylation, HDAC inhibition, and gene reactivation in primary tumors. Doxorubicin and cyclophosphamide treatment is safe, well-tolerated, and appears to increase the efficacy of chemotherapy. A randomized phase III study is ongoing to support the efficacy of so-called epigenetic or transcriptional cancer therapy

    Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies

    Get PDF
    Cutaneous melanoma is a very aggressive neoplasia of melanocytic origin with constantly growing incidence and mortality rates world-wide. Epigenetic modifications (i.e., alterations of genomic DNA methylation patterns, of post-translational modifications of histones, and of microRNA profiles) have been recently identified as playing an important role in melanoma development and progression by affecting key cellular pathways such as cell cycle regulation, cell signalling, differentiation, DNA repair, apoptosis, invasion and immune recognition. In this scenario, pharmacologic inhibition of DNA methyltransferases and/or of histone deacetylases were demonstrated to efficiently restore the expression of aberrantly-silenced genes, thus re-establishing pathway functions. In light of the pleiotropic activities of epigenetic drugs, their use alone or in combination therapies is being strongly suggested, and a particular clinical benefit might be expected from their synergistic activities with chemo-, radio-, and immuno-therapeutic approaches in melanoma patients. On this path, an important improvement would possibly derive from the development of new generation epigenetic drugs characterized by much reduced systemic toxicities, higher bioavailability, and more specific epigenetic effects

    Epigenetic modulators as therapeutic targets in prostate cancer

    Get PDF
    Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.info:eu-repo/semantics/publishedVersio
    • …
    corecore