50 research outputs found

    New insights into pedestrian flow through bottlenecks

    Full text link
    Capacity estimation is an important tool for the design and dimensioning of pedestrian facilities. The literature contains different procedures and specifications which show considerable differences with respect to the estimated flow values. Moreover do new experimental data indicate a stepwise growing of the capacity with the width and thus challenge the validity of the specific flow concept. To resolve these differences we have studied experimentally the unidirectional pedestrian flow through bottlenecks under laboratory conditions. The time development of quantities like individual velocities, density and individual time gaps in bottlenecks of different width is presented. The data show a linear growth of the flow with the width. The comparison of the results with experimental data of other authors indicates that the basic assumption of the capacity estimation for bottlenecks has to be revised. In contradiction with most planning guidelines our main result is, that a jam occurs even if the incoming flow does not overstep the capacity defined by the maximum of the flow according to the fundamental diagram.Comment: Traffic flow, pedestrian traffic, crowd dynamics, capacity of bottlenecks (16 pages, 8 figures); (+ 3 new figures and minor revisions

    Brandverhalten von Stahlbetonbauteilen mit Stabbündelbewehrung: Forschungsbericht

    Get PDF

    Characterizing correlations of flow oscillations at bottlenecks

    Full text link
    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations

    The Fundamental Diagram of Pedestrian Movement Revisited

    Full text link
    The empirical relation between density and velocity of pedestrian movement is not completely analyzed, particularly with regard to the `microscopic' causes which determine the relation at medium and high densities. The simplest system for the investigation of this dependency is the normal movement of pedestrians along a line (single-file movement). This article presents experimental results for this system under laboratory conditions and discusses the following observations: The data show a linear relation between the velocity and the inverse of the density, which can be regarded as the required length of one pedestrian to move. Furthermore we compare the results for the single-file movement with literature data for the movement in a plane. This comparison shows an unexpected conformance between the fundamental diagrams, indicating that lateral interference has negligible influence on the velocity-density relation at the density domain 1m2<ρ<5m21 m^{-2}<\rho<5 m^{-2}. In addition we test a procedure for automatic recording of pedestrian flow characteristics. We present preliminary results on measurement range and accuracy of this method.Comment: 13 pages, 9 figure

    Explosive spalling of concrete in fire

    No full text

    Explosive spalling of concrete in fire

    No full text

    New Data for Human Performance in Planar Corridors

    No full text
    corecore