1,060 research outputs found

    Morphological stability of a heterophase interface under electromigration conditions

    Full text link
    The evolution of the interface between two mutually insoluble metallic phases, under the influence of a strong electric field is examined. A slight perturbation of the interface away from a plane y=h(x) leads to a component of the electric field along the interface. This creates a diffusion flux of the individual atoms along the interface which, in turn, leads to an increase in the amplitude of the initial perturbation and thus to an interfacial profile instability. The processes is expected to be controlled by interface diffusion in response to three distinct driving forces: the electric field, internal stresses (which arise due to the accumulation or depletion of matter at the interface), and the interfacial curvature. The stress distribution along the interface was found from a self‐consistent solution of the elastic problem. For the instability to occur, differences in effective atomic charges, elastic moduli and/or atomic mobilities of the two constituent metals are required. Small sinusoidal corrugations are shown to grow with time for a range of wavelengths. The corrugations can grow monotonically or vary in oscillatory manner, depending on their wavelength. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69819/2/JAPIAU-79-9-6834-1.pd

    Observation of magnetically-induced transition intensity redistribution in the onset of the hyperfine Paschen-Back regime

    Full text link
    The Zeeman effect is an important topic in atomic spectroscopy. The induced change in transition frequencies and amplitudes finds applications in the Earth-field-range magnetometry. At intermediate magnetic field amplitude BB0=Ahfs/μBB\sim B_0 = A_\text{hfs}/\mu_B, where AhfsA_\text{hfs} is the magnetic dipole constant of the ground state, and μB\mu_B is the Bohr magneton (B01.7B_0\approx 1.7 kG for Cs), the rigorous rule ΔF=0,±1\Delta F = 0, \pm1 is affected by the coupling between magnetic sub-levels induced by the field. Transitions satisfying ΔF=±2\Delta F = \pm2, referred to as magnetically-induced transitions, can be observed. Here, we show that a significant redistribution of the Cs 6S1/26P3/26\text{S}_{1/2}\rightarrow 6\text{P}_{3/2} magnetically-induced transition intensities occurs with increasing magnetic field. We observe that the strongest transition in the group Fg=3Fe=5F_g=3\rightarrow F_e=5 (σ+\sigma^+ polarization) for B<B0B<B_0 cease to be the strongest for B>3B0B>3 B_0. On the other hand, the strongest transition in the group Fg=2Fe=4F_g=2\rightarrow F_e=4 (σ\sigma^- polarization) remains so for all our measurements with magnetic fields up to 9 kG. These results are in agreement with a theoretical model. The model predicts that similar observations can be made for all alkali metals, including Na, K and Rb atoms. Our findings are important for magnetometers utilizing the Zeeman effect above Earth field, following the rapid development of micro-machined vapor-cell-based sensors

    Bayesian Renormalization

    Full text link
    In this note we present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference, which we refer to as Bayesian Renormalization. The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale quantifying the distinguishability between nearby points in the space of probability distributions. This RG scale can be interpreted as a proxy for the maximum number of unique observations that can be made about a given system during a statistical inference experiment. The role of the Bayesian Renormalization scheme is subsequently to prepare an effective model for a given system up to a precision which is bounded by the aforementioned scale. In applications of Bayesian Renormalization to physical systems, the emergent information theoretic scale is naturally identified with the maximum energy that can be probed by current experimental apparatus, and thus Bayesian Renormalization coincides with ordinary renormalization. However, Bayesian Renormalization is sufficiently general to apply even in circumstances in which an immediate physical scale is absent, and thus provides an ideal approach to renormalization in data science contexts. To this end, we provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation such as the information bottleneck and the diffusion learning paradigm.Comment: 20 pages, no figures. V2: Citation format fixed, references adde

    Geotechnical Forensic Investigation of Observed Cracks on a Building in Tallahassee, Florida

    Get PDF
    In July 2010, two vapor extraction wells were installed about 15 feet from a building at an angle of 50 degrees to the horizontal using rotosonic drilling technique (RDT). In June 2011, a crack approximately 0.5 inch wide on the wall of the building was reported. Several other small cracks were observed on the building following inspection by the authors. The owner of the building expressed concerns that the rotosonic drilling was the cause of the cracks and wanted assurance that subsequent drillings would not exacerbate the problem. Geotechnical forensic investigation was performed to evaluate the potential cause(s) of cracking in the building and whether future drilling would impact the building and the foundation structure system. The investigations involved performing site reconnaissance surveys, site-specific field investigations, real-time vibration monitoring, crack monitoring, and geotechnical laboratory analyses. This paper presents the results from the forensic investigations. Based on these results, potential causes for the development of cracks in the wall of the building and recommended repair measures are discussed
    corecore