80 research outputs found

    Multiple tissue-specific requirements for the BMP antagonist Noggin in development of the mammalian craniofacial skeleton

    Get PDF
    AbstractProper morphogenesis is essential for both form and function of the mammalian craniofacial skeleton, which consists of more than twenty small cartilages and bones. Skeletal elements that support the oral cavity are derived from cranial neural crest cells (NCCs) that develop in the maxillary and mandibular buds of pharyngeal arch 1 (PA1). Bone Morphogenetic Protein (BMP) signaling has been implicated in most aspects of craniofacial skeletogenesis, including PA1 development. However, the roles of the BMP antagonist Noggin in formation of the craniofacial skeleton remain unclear, in part because of its multiple domains of expression during formative stages. Here we used a tissue-specific gene ablation approach to assess roles of Noggin (Nog) in two different tissue domains potentially relevant to mandibular and maxillary development. We found that the axial midline domain of Nog expression is critical to promote PA1 development in early stages, necessary for adequate outgrowth of the mandibular bud. Subsequently, Nog expression in NCCs regulates craniofacial cartilage and bone formation. Mice lacking Nog in NCCs have an enlarged mandible that results from increased cell proliferation in and around Meckel׳s cartilage. These mutants also show complete secondary cleft palate, most likely due to inhibition of posterior palatal shelf elevation by disrupted morphology of the developing skull base. Our findings demonstrate multiple roles of Noggin in different domains for craniofacial skeletogenesis, and suggest an indirect mechanism for secondary cleft palate in Nog mutants that may be relevant to human cleft palate as well

    BMP receptor IA is required in the mammalian embryo for endodermal morphogenesis and ectodermal patterning

    Get PDF
    AbstractBMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning

    Cordon-Bleu Is an Actin Nucleation Factor and Controls Neuronal Morphology

    Get PDF
    SummaryDespite the wealth of different actin structures formed, only two actin nucleation factors are well established in vertebrates: the Arp2/3 complex and formins. Here, we describe a further nucleator, cordon-bleu (Cobl). Cobl is a brain-enriched protein using three Wiskott-Aldrich syndrome protein homology 2 (WH2) domains for actin binding. Cobl promotes nonbundled, unbranched filaments. Filament formation relies on barbed-end growth and requires all three Cobl WH2 domains and the extended linker L2. We suggest that the nucleation power of Cobl is based on the assembly of three actin monomers in cross-filament orientation. Cobl localizes to sites of high actin dynamics and modulates cell morphology. In neurons, induction of both neurites and neurite branching is dramatically increased by Cobl expression—effects that critically depend on Cobl's actin nucleation ability. Correspondingly, Cobl depletion results in decreased dendritic arborization. Thus, Cobl is an actin nucleator controlling neuronal morphology and development

    EQIP\u27s First Year: A Step Closer to Higher Quality in Surgical Education.

    Get PDF
    OBJECTIVE: To describe the first year of the Educational Quality Improvement Program (EQIP) DESIGN: The Educational Quality Improvement Program (EQIP) was formed by the Association of Program Directors in Surgery (APDS) in 2018 as a continuous educational quality improvement program. Over 18 months, thirteen discrete goals for the establishment of EQIP were refined and executed through a collaborative effort involving leaders in surgical education. Alpha and beta pilots were conducted to refine the data queries and collection processes. A highly-secure, doubly-deidentified database was created for the ingestion of resident and program data. SETTING & PARTICIPANTS: 36 surgical training programs with 1264 trainees and 1500 faculty members were included in the dataset. 51,516 ERAS applications to programs were also included. Uni- and multi-variable analysis was then conducted. RESULTS: EQIP was successfully deployed within the timeline described in 2020. Data from the ACGME, ABS, and ERAS were merged with manually entered data by programs and successfully ingested into the EQIP database. Interactive dashboards have been constructed for use by programs to compare to the national cohort. Risk-adjusted multivariable analysis suggests that increased time in a technical skills lab was associated with increased success on the ABS\u27s Qualifying Examination, alone. Increased time in a technical skills lab and the presence of a formal teaching curriculum were associated with increased success on both the ABS\u27s Qualifying and Certifying Examination. Program type may be of some consequence in predicting success on the Qualifying Examination. CONCLUSIONS: The APDS has proved the concept that a highly secure database for the purpose of continuous risk-adjusted quality improvement in surgical education can be successfully deployed. EQIP will continue to improve and hopes to include an increasing number of programs as the barriers to participation are overcome

    Chordin Is a Modifier of Tbx1 for the Craniofacial Malformations of 22q11 Deletion Syndrome Phenotypes in Mouse

    Get PDF
    Point mutations in TBX1 can recapitulate many of the structural defects of 22q11 deletion syndromes (22q11DS), usually associated with a chromosomal deletion at 22q1.2. 22q11DS often includes specific cardiac and pharyngeal organ anomalies, but the presence of characteristic craniofacial defects is highly variable. Even among family members with a single TBX1 point mutation but no cytological deletion, cleft palate and low-set ears may or may not be present. In theory, such differences could depend on an unidentified, second-site lesion that modifies the craniofacial consequences of TBX1 deficiency. We present evidence for such a locus in a mouse model. Null mutations of chordin have been reported to cause severe defects recapitulating 22q11DS, which we show are highly dependent on genetic background. In an inbred strain in which chordin−/− is fully penetrant, we found a closely linked, strong modifier—a mutation in a Tbx1 intron causing severe splicing defects. Without it, lack of chordin results in a low penetrance of mandibular hypoplasia but no cardiac or thoracic organ malformations. This hypomorphic Tbx1 allele per se results in defects resembling 22q11DS but with a low penetrance of hallmark craniofacial malformations, unless chordin is mutant. Thus, chordin is a modifier for the craniofacial anomalies of Tbx1 mutations, demonstrating the existence of a second-site modifier for a specific subset of the phenotypes associated with 22q11DS
    • …
    corecore