11 research outputs found

    Probabilistic, Variable and Interaction-aware Situation Recognition

    Get PDF
    Future advanced driver assistance systems (ADAS) as well as autonomous driving functions will extend their applicability to more complex highway scenarios and inner-city traffic. For these systems it is a prerequisite to know how an encountered traffic scene is most likely going to evolve. Situation recognition aims to predict the high level behavior patterns traffic participants pursue. Thus, it provides valuable information that helps to predict the next few seconds of a traffic scene. The extension of ADAS and autonomous driving functions to more complex scenarios poses a problem to state-of-the-art situation recognition systems due to the variability of the encountered scene layouts, the presence of multiple interacting traffic participants and the concomitant large number of possible situation classes. This thesis proposes and discusses approaches that tackle these challenges. A novel discriminative maneuver estimation framework provides the possibility to assess traffic scenes with varying layout. It is based on reusable, partial classifiers that are combined online using a technique called pairwise probability coupling. The real-world evaluations indicate that the assembled probabilistic maneuver estimation is able to provide superior classification results. A novel interaction-aware situation recognition framework constructs a probabilistic situation assessment over multiple traffic participants without relying on independence assumptions. It allows to assess each traffic participant individually by using maneuver estimation systems that determine complete conditional distributions. A real-world evaluation outlines its applicability and shows its benefits. The challenges associated with the increasing number of possible situation classes are addressed in two ways. Both frameworks allow to reuse classifiers in different contexts. This reduces the number of models required to cope with a large variety of traffic scenes. Moreover, a situation hypotheses selection scheme provides an efficient way for reducing the number of situation hypotheses. This lowers the computational demands and eases the load on subsequent systems

    The Foresighted Driver: Future ADAS Based on Generalized Predictive Risk Estimation

    Get PDF
    Separably developed functionality as well as increasing situation complexity poses problems for building, testing, and validating future Advanced Driving Assistance Systems (ADAS). These will have to deal with situations in which several current ADAS domains interplay. We argue that a generalized estimation of the future ADAS functions’ benefit is required for efficient testing and evaluations, and propose a quantification based on an estimation of the predicted risk. The approach can be applied to several different types of risks and to such diverse scenarios as longitudinal driving, intersection crossing and lane changes with several traffic participants. Resulting trajectories exhibit a proactive, ”foresighted” driver behavior which smoothly avoids potential future risks

    Probabilistic, Variable and Interaction-aware Situation Recognition

    No full text
    Future advanced driver assistance systems (ADAS) as well as autonomous driving functions will extend their applicability to more complex highway scenarios and inner-city traffic. For these systems it is a prerequisite to know how an encountered traffic scene is most likely going to evolve. Situation recognition aims to predict the high level behavior patterns traffic participants pursue. Thus, it provides valuable information that helps to predict the next few seconds of a traffic scene. The extension of ADAS and autonomous driving functions to more complex scenarios poses a problem to state-of-the-art situation recognition systems due to the variability of the encountered scene layouts, the presence of multiple interacting traffic participants and the concomitant large number of possible situation classes. This thesis proposes and discusses approaches that tackle these challenges. A novel discriminative maneuver estimation framework provides the possibility to assess traffic scenes with varying layout. It is based on reusable, partial classifiers that are combined online using a technique called pairwise probability coupling. The real-world evaluations indicate that the assembled probabilistic maneuver estimation is able to provide superior classification results. A novel interaction-aware situation recognition framework constructs a probabilistic situation assessment over multiple traffic participants without relying on independence assumptions. It allows to assess each traffic participant individually by using maneuver estimation systems that determine complete conditional distributions. A real-world evaluation outlines its applicability and shows its benefits. The challenges associated with the increasing number of possible situation classes are addressed in two ways. Both frameworks allow to reuse classifiers in different contexts. This reduces the number of models required to cope with a large variety of traffic scenes. Moreover, a situation hypotheses selection scheme provides an efficient way for reducing the number of situation hypotheses. This lowers the computational demands and eases the load on subsequent systems
    corecore