23 research outputs found

    Evaluation of the exposure, dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to TiO2, chrysotile, crocidolite or amosite asbestos in a 90-day quantitative inhalation toxicology study – Interim results Part 1: Experimental design, aerosol exposure, lung burdens and BAL

    Get PDF
    Abstract: This 90-day repeated-dose inhalation toxicology study of brake-dust (BD) (brakes manufactured with chrysotile) in rats provides a comprehensive understanding of the biokinetics and potential toxicology in the lung and pleura. Exposure was 6 h/d, 5d/wk., 13wks followed by lifetime observation (~20 % survival). Control groups included a particle control (TiO2), chrysotile, commercial crocidolite and amosite asbestos. Aerosol fiber distributions of the chrysotile, crocidolite and amosite were similar (fibers L > 20 μm/cm3 : chrysotile-Low/High 29/72; crocidolite 24; amosite 47 fibers/cm3 ; WHO-fibers/cm3 : chrysotile-Low/High 119/ 233; crocidolite 181; amosite 281 fibers/cm3 ). The number of particles/cm3 in the BD was similar to that in the chrysotile, crocidolite & amosite exposures (BD 470–715; chrysotile 495–614; crocidolite 415; amosite 417 particles/cm3 ). In the BD groups, few fibers L > 20 μm were observed in the lungs at the end of exposure and no fibers L > 20 μm at 90d post exposure. In the chrysotile groups, means of 204,000 and 290,000 fibers(L > 20 μm)/ lung were measured at 89d. By 180d, means of 1 and 3.9 fibers were counted on the filter corresponding to 14,000 and 55,000 fibers(L > 20 μm)/lung. In the crocidolite and amosite groups mean lung concentrations were 9,055,000 and 11,645,000 fibers (L > 20 μm)/lung at 89d. At 180d the means remained similar with 8,026,000 and 11,591,000 fibers (L > 20 μm)/lung representing 10–13% of the total lung fibers. BAL determined the total number of macrophages, lymphocytes, neutrophils, eosinophils, epithelial-cells and IL-1 beta, TNF-alpha and TGF-beta. At the moderate aerosol concentrations used in this study, neutrophil counts increased ~5 fold in the amphibole asbestos exposure groups. All other groups and parameters showed no important differences at these exposure concentrations. The exposure and lung burden results provide a sound basis for assessing the potential toxicity of the brake dust in comparison to the TiO2 particle control and the chrysotile, crocidolite and amosite asbestos control groups. The BAL results provide an initial indication of the differential response. Part 2 presents the presentation and discussion of the histopathological and confocal microscopy findings in this study through 90 days post exposure

    Protective alpha1-antitrypsin effects in autoimmune vasculitis are compromised by methionine oxidation

    Get PDF
    BACKGROUND: Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitidies (AAV) are life-threatening systemic autoimmune conditions. ANCA directed against proteinase 3 (PR3) or myeloperoxidase (MPO) bind their cell surface-presented antigen, activate neutrophils and cause vasculitis. An imbalance between PR3 and its major inhibitor a1-antitrypsin (AAT) was proposed to underlie PR3- but not MPO-AAV. We measured AAT and PR3 in healthies and AAV patients and studied protective AAT effects pertaining to PR3- and MPO-ANCA. METHODS: Plasma and blood neutrophils were assessed for PR3 and AAT. Wild-type, mutant, and oxidation-resistant AAT species were produced to characterize AAT-PR3 interactions by flow cytometry, immunoblotting, FRET assays, and surface plasmon resonance measurements. Neutrophil activation was measured using the ferricytochrome C assay and AAT methionine-oxidation by Parallel Reaction Monitoring. RESULTS: We found significantly increased PR3 and AAT pools in both PR3- and MPO-AAV patients, however, only in PR3-AAV did the PR3 pool correlate with ANCA titer, inflammatory response and disease severity. Mechanistically, AAT prevented PR3 from binding to CD177, thereby reducing neutrophil surface antigen for ligation by PR3-ANCA. Active PR3-AAV patients showed critical methionine-oxidation in plasma AAT that was recapitulated by ANCA-activated neutrophils. The protective PR3-related AAT effects were compromised by methionine-oxidation in the AAT reactive center loop but preserved when two critical methionines were substituted by valine and leucine. CONCLUSION: Pathogenic differences between PR3- and MPO-AAV are related to AAT regulation of membrane-PR3, attenuating neutrophil activation by PR3- rather than MPO-ANCA. Oxidation-resistant AAT could serve as adjunctive therapy in PR3-AAV
    corecore