726 research outputs found
KIF2A silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer
Background; Kinesin family member 2a (KIF2A), a type of motor protein found in eukaryotic cells, is associated with development and progression of various human cancers. The role of KIF2A during breast cancer tumorigenesis and progression was studied. Methods; Immunohistochemical staining, real time RT-PCR and western blot were used to examine the expression of KIF2A in cancer tissues and adjacent normal tissues from breast cancer patients. Patients’ survival in relation to KIF2A expression was estimated using the Kaplan–Meier survival and multivariate analysis. Breast cancer cell line, MDA-MB-231 was used to study the proliferation, migration and invasion of cells following KIF2A-siRNA transfection. Results; The expression of KIF2A in cancer tissues was higher than that in normal adjacent tissues from the same patient (P < 0.05). KIF2A expression in cancer tissue with lymph node metastasis and HER2 positive cancer were higher than that in cancer tissue without (P < 0.05). A negative correlation was found between KIF2A expression levels in breast cancer and the survival time of breast cancer patients (P < 0.05). In addition, multivariate analysis indicated that KIF2A was an independent prognostic for outcome in breast cancer (OR: 16.55, 95% CI: 2.216-123.631, P = 0.006). The proliferation, migration and invasion of cancer cells in vitro were suppressed by KIF2A gene silencing (P < 0.05). Conclusions; KIF2A may play an important role in breast cancer progression and is potentially a novel predictive and prognostic marker for breast cancer
Comprehensive genetic assessment of a functional TLR9 promoter polymorphism: no replicable association with asthma or asthma-related phenotypes
<p>Abstract</p> <p>Background</p> <p>Prior studies suggest a role for a variant (rs5743836) in the promoter of toll-like receptor 9 (TLR9) in asthma and other inflammatory diseases. We performed detailed genetic association studies of the functional variant rs5743836 with asthma susceptibility and asthma-related phenotypes in three independent cohorts.</p> <p>Methods</p> <p>rs5743836 was genotyped in two family-based cohorts of children with asthma and a case-control study of adult asthmatics. Association analyses were performed using chi square, family-based and population-based testing. A luciferase assay was performed to investigate whether rs5743836 genotype influences TLR9 promoter activity.</p> <p>Results</p> <p>Contrary to prior reports, rs5743836 was not associated with asthma in any of the three cohorts. Marginally significant associations were found with FEV<sub>1 </sub>and FVC (p = 0.003 and p = 0.008, respectively) in one of the family-based cohorts, but these associations were not significant after correcting for multiple comparisons. Higher promoter activity of the CC genotype was demonstrated by luciferase assay, confirming the functional importance of this variant.</p> <p>Conclusion</p> <p>Although rs5743836 confers regulatory effects on TLR9 transcription, this variant does not appear to be an important asthma-susceptibility locus.</p
Validation of a Farsi version of the Early Childhood Oral Health Impact Scale (F-ECOHIS)
<p>Abstract</p> <p>Background</p> <p>The Early Childhood Oral Health Impact Scale (ECOHIS) has recently been developed to assess oral health-related quality of life (OHRQoL) of pre-school children in English speaking communities. This study aimed to translate the ECOHIS into Farsi and test its psychometric properties for use on 2- to 5-year-old children of Farsi speaking Iranian families.</p> <p>Methods</p> <p>EHOHIS questionnaire was translated into Farsi using a standardized forward-backward linguistic translation method. Its face and content validity was tested in two small pilot studies. In the main study, a convenience sample of 260 parents of 2- to 5-year-old children in Isfahan and Tehran were invited to complete the final Farsi version of the ECOHIS (F-ECOHIS) and answer two global self-rating questions about their children's dental appearance and oral health. Association between F-ECOHIS scores and answers to the two self-rating questions, and the correlation between child (9 items) and family (4 items) sections of the F-ECOHIS were used to assess the concurrent and convergent validity of the questionnaire. Internal consistency reliability of the F-ECOHIS was tested using Cronbach's alpha coefficient test and item total and inter-item correlations. One third of participants were invited to complete the F-ECOHIS again after 2 weeks to evaluate the test-retest reliability of the questionnaire.</p> <p>Results</p> <p>Two hundred and forty six parents were included in the main study. The association between the F-ECOHIS scores and the two self-rating questions and the correlation between its child and family sections were significant (P < 0.001). Cronbach's alpha coefficient of the F-ECOHIS and its child and family sections were 0.93, 0.89, and 0.85 respectively. Coefficients did not increase by deleting any item. The corrected item total correlation coefficient ranged from 0.52 to 0.74. The inter-item correlation coefficient ranged between 0.30 and 0.73. Seventy three parents participated in the follow up study for re-testing the questionnaire. Comparison of their test and re-test scores had a weighted kappa of 0.81 and inter-class correlation (ICC) of 0.82.</p> <p>Conclusion</p> <p>The F-ECOHIS questionnaire was valid and reliable for assessing the OHRQoL of 2- to 5-year-old pre-school children of Farsi speaking parents.</p
Simulated Microgravity Compromises Mouse Oocyte Maturation by Disrupting Meiotic Spindle Organization and Inducing Cytoplasmic Blebbing
In the present study, we discovered that mouse oocyte maturation was inhibited by simulated microgravity via disturbing spindle organization. We cultured mouse oocytes under microgravity condition simulated by NASA's rotary cell culture system, examined the maturation rate and observed the spindle morphology (organization of cytoskeleton) during the mouse oocytes meiotic maturation. While the rate of germinal vesicle breakdown did not differ between 1 g gravity and simulated microgravity, rate of oocyte maturation decreased significantly in simulated microgravity. The rate of maturation was 8.94% in simulated microgravity and was 73.0% in 1 g gravity. The results show that the maturation of mouse oocytes in vitro was inhibited by the simulated microgravity. The spindle morphology observation shows that the microtubules and chromosomes can not form a complete spindle during oocyte meiotic maturation under simulated microgravity. And the disorder of γ-tubulin may partially result in disorganization of microtubules under simulated microgravity. These observations suggest that the meiotic spindle organization is gravity dependent. Although the spindle organization was disrupted by simulated microgravity, the function and organization of microfilaments were not pronouncedly affected by simulated microgravity. And we found that simulated microgravity induced oocytes cytoplasmic blebbing via an unknown mechanism. Transmission electron microscope detection showed that the components of the blebs were identified with the cytoplasm. Collectively, these results indicated that the simulated microgravity inhibits mouse oocyte maturation via disturbing spindle organization and inducing cytoplasmic blebbing
Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling
<p>Abstract</p> <p>Background</p> <p>With the abundant information produced by microarray technology, various approaches have been proposed to infer transcriptional regulatory networks. However, few approaches have studied subtle and indirect interaction such as genetic compensation, the existence of which is widely recognized although its mechanism has yet to be clarified. Furthermore, when inferring gene networks most models include only observed variables whereas latent factors, such as proteins and mRNA degradation that are not measured by microarrays, do participate in networks in reality.</p> <p>Results</p> <p>Motivated by inferring transcriptional compensation (TC) interactions in yeast, a stepwise structural equation modeling algorithm (SSEM) is developed. In addition to observed variables, SSEM also incorporates hidden variables to capture interactions (or regulations) from latent factors. Simulated gene networks are used to determine with which of six possible model selection criteria (MSC) SSEM works best. SSEM with Bayesian information criterion (BIC) results in the highest true positive rates, the largest percentage of correctly predicted interactions from all existing interactions, and the highest true negative (non-existing interactions) rates. Next, we apply SSEM using real microarray data to infer TC interactions among (1) small groups of genes that are synthetic sick or lethal (SSL) to SGS1, and (2) a group of SSL pairs of 51 yeast genes involved in DNA synthesis and repair that are of interest. For (1), SSEM with BIC is shown to outperform three Bayesian network algorithms and a multivariate autoregressive model, checked against the results of qRT-PCR experiments. The predictions for (2) are shown to coincide with several known pathways of Sgs1 and its partners that are involved in DNA replication, recombination and repair. In addition, experimentally testable interactions of Rad27 are predicted.</p> <p>Conclusion</p> <p>SSEM is a useful tool for inferring genetic networks, and the results reinforce the possibility of predicting pathways of protein complexes via genetic interactions.</p
Comparative proteomic profiling reveals mechanisms for early spinal cord vulnerability in CLN1 disease
CLN1 disease is a fatal inherited neurodegenerative lysosomal storage disease of early childhood, caused by mutations in the CLN1 gene, which encodes the enzyme Palmitoyl protein thioesterase-1 (PPT-1). We recently found significant spinal pathology in Ppt1-deficient (Ppt1−/−) mice and human CLN1 disease that contributes to clinical outcome and precedes the onset of brain pathology. Here, we quantified this spinal pathology at 3 and 7 months of age revealing significant and progressive glial activation and vulnerability of spinal interneurons. Tandem mass tagged proteomic analysis of the spinal cord of Ppt1−/−and control mice at these timepoints revealed a significant neuroimmune response and changes in mitochondrial function, cell-signalling pathways and developmental processes. Comparing proteomic changes in the spinal cord and cortex at 3 months revealed many similarly affected processes, except the inflammatory response. These proteomic and pathological data from this largely unexplored region of the CNS may help explain the limited success of previous brain-directed therapies. These data also fundamentally change our understanding of the progressive, site-specific nature of CLN1 disease pathogenesis, and highlight the importance of the neuroimmune response. This should greatly impact our approach to the timing and targeting of future therapeutic trials for this and similar disorders
Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice
<p>Abstract</p> <p>Background</p> <p>Pulmonary fibrosis (PF) is a group of devastating and largely irreversible diseases. Phosphodiesterase (PDE) 4 is involved in the processes of remodeling and inflammation, which play key role in tissue fibrosis. The aim of the study was, therefore, to investigate the effect of PDE4 inhibition in experimental model of PF.</p> <p>Methods</p> <p>PF was induced in C57BL/6N mice by instillation of bleomycin. Pharmacological inhibition of PDE4 was achieved by using cilomilast, a selective PDE4 inhibitor. Changes in either lung inflammation or remodeling were evaluated at different stages of experimental PF. Lung inflammation was assessed by bronchoalveolar lavage fluid (BALF) differential cell count and reverse transcription quantitative polymerase chain reaction (RT-qPCR) for inflammatory cytokines. Changes in tissue remodeling were evaluated by pulmonary compliance measurement, quantified pathological examination, measurement of collagen deposition and RT-qPCR for late remodeling markers. Survival in all groups was analyzed as well.</p> <p>Results</p> <p>PDE4 inhibition significantly reduced the total number of alveolar inflammatory cells in BALF of mice with bleomycin-induced PF at early fibrosis stage (days 4 and 7). Number of macrophages and lymphocytes, but not neutrophils, was significantly reduced as well. Treatment decreased lung tumor necrosis factor (TNF)-α mRNA level and increased mRNA level of interleukin (IL)-6 but did not influence IL-1β. At later stage (days 14 and 24) cilomilast improved lung function, which was shown by increase in lung compliance. It also lowered fibrosis degree, as was shown by quantified pathological examination of Hematoxilin-Eosin stained lung sections. Cilomilast had no significant effect on the expression of late remodeling markers such as transforming growth factor (TGF)-β1 and collagen type Ia1 (COL(I)α1). However, it tended to restore the level of lung collagen, assessed by SIRCOL assay and Masson's trichrome staining, and to improve the overall survival.</p> <p>Conclusions</p> <p>Selective PDE4 inhibition suppresses early inflammatory stage and attenuates the late stage of experimental pulmonary fibrosis.</p
Role of Endoplasmic Reticulum Stress in α-TEA Mediated TRAIL/DR5 Death Receptor Dependent Apoptosis
Background -- α-TEA (RRR-α-tocopherol ether-linked acetic acid analog), a derivative of RRR-α-tocopherol (vitamin E) exhibits anticancer actions in vitro and in vivo in variety of cancer types. The objective of this study was to obtain additional insights into the mechanisms involved in α-TEA induced apoptosis in human breast cancer cells. Methodology/Principal Findings -- α-TEA induces endoplasmic reticulum (ER) stress as indicated by increased expression of CCAAT/enhancer binding protein homologous protein (CHOP) as well as by enhanced expression or activation of specific markers of ER stress such as glucose regulated protein (GRP78), phosphorylated alpha subunit of eukaryotic initiation factor 2 (peIF-2α), and spliced XBP-1 mRNA. Knockdown studies using siRNAs to TRAIL, DR5, JNK and CHOP as well as chemical inhibitors of ER stress and caspase-8 showed that: i) α-TEA activation of DR5/caspase-8 induces an ER stress mediated JNK/CHOP/DR5 positive amplification loop; ii) α-TEA downregulation of c-FLIP (L) protein levels is mediated by JNK/CHOP/DR5 loop via a JNK dependent Itch E3 ligase ubiquitination that further serves to enhance the JNK/CHOP/DR5 amplification loop by preventing c-FLIP's inhibition of caspase-8; and (iii) α-TEA downregulation of Bcl-2 is mediated by the ER stress dependent JNK/CHOP/DR5 signaling. Conclusion -- Taken together, ER stress plays an important role in α-TEA induced apoptosis by enhancing DR5/caspase-8 pro-apoptotic signaling and suppressing anti-apoptotic factors c-FLIP and Bcl-2 via ER stress mediated JNK/CHOP/DR5/caspase-8 signaling.The Clayton Foundation for Research, the National Institute of Environmental Health Sciences Center Grant ES007784, the Center for Molecular and Cellular Toxicology at the University of Texas at Austin and a NIEHS/NIH Toxicology Training Grant T32 ES07247. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o
- …