6 research outputs found
Minimum-weight triangulation is NP-hard
A triangulation of a planar point set S is a maximal plane straight-line
graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we
are looking for a triangulation of a given point set that minimizes the sum of
the edge lengths. We prove that the decision version of this problem is
NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the
gadgets is established with computer assistance, using dynamic programming on
polygonal faces, as well as the beta-skeleton heuristic to certify that certain
edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures.
This revision contains a few improvements in the expositio
On a Linear Program for Minimum-Weight Triangulation
Minimum-weight triangulation (MWT) is NP-hard. It has a polynomial-time
constant-factor approximation algorithm, and a variety of effective polynomial-
time heuristics that, for many instances, can find the exact MWT. Linear
programs (LPs) for MWT are well-studied, but previously no connection was known
between any LP and any approximation algorithm or heuristic for MWT. Here we
show the first such connections: for an LP formulation due to Dantzig et al.
(1985): (i) the integrality gap is bounded by a constant; (ii) given any
instance, if the aforementioned heuristics find the MWT, then so does the LP.Comment: To appear in SICOMP. Extended abstract appeared in SODA 201
Edge insertion for optimal triangulations
10.1007/BF02573962Discrete & Computational Geometry10147-6