2 research outputs found

    Energy digital twin technology for industrial energy management: Classification, challenges and future

    Get PDF
    Digitalisation of the process and energy industries through energy digital twin technology promises step-improvements in energy management and optimisation, better servicing and maintenance, energy-efficient design and evolution of existing sites, and integration with locally and regionally generated renewable energy. This systematic and critical review aims to accelerate the understanding, classification, and application of energy digital twin technology. It adds to the literature by developing an original multi-dimensional digital twin classification framework, summarising the applications of energy digital twins throughout a site's lifecycle, and constructing a proposal of how to apply the technology to industrial sites and local areas to enable a reduction in carbon and other environmental footprints. The review concludes by identifying key challenges that face uptake of energy digital twins and a framework to apply the energy digital twins

    Multi-Level Process Integration of Heat Pumps in Meat Processing

    No full text
    Many countries across the globe are facing the challenge of replacing coal and natural gas-derived process heat with low-emission alternatives. In countries such as New Zealand, which have access to renewably generated electricity, industrial heat pumps offer great potential to reduce sitewide industrial carbon emissions. In this paper, a new Pinch-based Total Site Heat Integration (TSHI) method is proposed and used to explore and identify multi-level heat pump integration options at a meat processing site in New Zealand. This novel method improves upon standard methods that are currently used in industry and successfully identifies heat pump opportunities that might otherwise be missed by said standard methods. The results of the novel method application suggest that a Mechanical Vapour Recompression (MVR) system in the Rendering plant and a centralized air-source heat pump around the hot water ring main could reduce site emissions by over 50%. Future research will develop these preliminary results into a dynamic emissions reduction plan for the site, the novel methods for which will be transferrable to similar industrial sites
    corecore