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A B S T R A C T   

Digitalisation of the process and energy industries through energy digital twin technology promises step- 
improvements in energy management and optimisation, better servicing and maintenance, energy-efficient 
design and evolution of existing sites, and integration with locally and regionally generated renewable en
ergy. This systematic and critical review aims to accelerate the understanding, classification, and application of 
energy digital twin technology. It adds to the literature by developing an original multi-dimensional digital twin 
classification framework, summarising the applications of energy digital twins throughout a site’s lifecycle, and 
constructing a proposal of how to apply the technology to industrial sites and local areas to enable a reduction in 
carbon and other environmental footprints. The review concludes by identifying key challenges that face uptake 
of energy digital twins and a framework to apply the energy digital twins.   

1. Introduction 

The process heat and energy sectors are facing increasing pressure 
from global environmental challenges (e.g., climate change) to reduce 
energy consumption and greenhouse gas emissions while maintaining 
cost competitiveness through low operational and maintenance costs. 
Substantial research is currently underway to identify ways, such as new 
process technology, process systems integration, green fuels, and digi
talisation, to minimise greenhouse gas emissions from the process and 
energy industries. 

1.1. The industrial energy and emissions challenge 

The industrial processing sector uses vast amounts of thermal energy 
in manufacturing processes and contributes 35.2% of estimated global 
CO2-equivalent emissions (or 17.4 Gt CO2-e), of which 69% are related 
to energy use in industry [1]. In New Zealand, the story is similar with 
industrial process heat accounting for 28% of gross CO2-e emissions [2]. 
Even with considerable drivers for improvement, only 25% of sites in 
one study were reported to apply best practices regarding energy man
agement and key performance indicators [3], which highlights a critical 
gap that needs to be closed to reduce energy and emissions from 

industry. The drivers, barriers and major factors for energy management 
systems were addressed by many researchers, for example, there is a 
need for an easy-to-handle and systematic method [4], energy efficiency 
KPI development [5], inclusion of long-term strategic targets [6], 
removal of barriers for energy management [7] and key pillars of suc
cessful energy saving projects [8]. Moreover, most current energy 
monitoring, control and management systems need major rethinking 
and upgrades to enable the rapid emissions reduction needed in the next 
decade, including new renewable energy technology implementation on 
existing processes [9]. Conceptually, DT technology shows great po
tential as a digital enabler for identifying the optimal physical solutions 
for both plant operations and assets to address the energy-emission 
crisis. 

Industrial digitalisation through energy digital twins (EDT) is being 
considered to effectively manage and optimise site operations to mini
mise specific energy consumption, assist with energy-efficient design 
and evolution of their production processes and sites, and establish a 
green energy roadmap to switch to renewable fuels and better connect 
sites with locally generated renewable energy. As this review will 
demonstrate, EDT technology can be a paradigm shift that fundamen
tally changes the way a site operates to minimise specific energy con
sumption and increase renewable energy integration across all time 
horizons, including real-time control, production scheduling and 
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planning, asset maintenance, and technology retrofit and upgrade. 

1.2. A brief history of digital twin conception and development 

Going back to 1970, NASA, faced with a crippled Apollo 13 space
craft and stranded astronauts, employed high-fidelity simulations to 
virtually test a range of fix-it scenarios. The use of virtual simulation of a 
physical system enabled engineers to identify the best course of action to 
fix the spacecraft, which ultimately resulted in the safe return of the 
astronauts [10]. Three decades later in 2003, Grieves [11] coined the 
term digital twin (DT) to describe a system that contains: a physical part, 
a digital (or virtual) replica, and a connection between the two domains. 
Grieves [12] extended the definition to include a DT prototype, a DT 
instance, and a DT aggregate. Realising the similarities to the 1970 
mission crisis, NASA connected the DT concept for application to space 
vehicles in 2010 [13] and 2011 [14]. After Grieves, most early papers 
defined DT as a high-fidelity simulation, without clearly specifying the 
connection between the virtual and physical parts. As DT research 
progressed, more researchers focused on the connection between virtual 
and physical parts, including seamless assistance [15], living models 
[16], updated virtual models [17] and bi-directional connections [18]. 
In addition, the concept of self-adaptation in DTs has started to be 
explored with ideas such as adaptivity [18] and self-evolution [19]. 

Since 2010, the topic of DT technology has experienced exponential 
growth in research activity and crossing into new fields, including 
renewable and sustainable energy. Fig. 1 presents a brief timeline of DT 
technology development emphasising definitional shifts. In particular, 
two studies helped to define and clarify different types of DTs. Kritzinger 
et al. [20] proposed to split the DT definition into three distinct cate
gories according to the level of data integration (from least to most): 
digital model, digital shadow, and digital twin. The connectivity be
tween the physical and digital twins was regarded as a critical and 
distinctive feature. As a result, a digital model, according to Kritzinger 
et al. [20] only contains non-automated data flow between the physical 
and digital twins; a digital shadow includes one-way automated data 
flow; while a digital twin requires two-way automated data flow. 
Written from a control engineering perspective, the study narrowed the 
definition of DT to fully automated applications while using the other 
terms for less-automated scenarios, including the Apollo 13 case. Madni 
et al. [17] proposed the classification of DT representations into 5 cat
egories: model sophistication, physical twin existence, data acquisition 
from physical twin, machine learning of operator preferences and ma
chine learning of the system and environment. In this definition, there is 

further discrimination of DT based on their connection to the physical 
twin and also introduces the sophistication or fidelity of the DT, while 
focusing only machine learning modelling approaches and not classi
fying DT modelling more generally. 

1.3. Research and review gap 

The usage of the term “digital twin” in academic and industrial 
literature has dramatically increased in the past five years. However, the 
DT research activities for different industries are not evenly distrib
uted—the most popular areas are manufacturing DT (more than 1000 
papers from Scopus since 2010) and building DT (400 plus papers from 

List of abbreviations 

AI Artificial intelligence 
ARIMA Autoregressive integrated moving average 
CAD Computer aided design 
CFD Computational fluid dynamics 
CRISP-DM Cross industry standard process for data mining 
DMD-c Dynamic mode decomposition with control 
DT Digital twin 
EDT Energy digital twin 
FPGA Field Programmable Gate Array 
IIoT Industrial internet of things 
IoT Internet of things 
KPI Key performance indicators 
ML Machine learning 
MPC Model predictive control 
PCA Principal component analysis 
RL Reinforcement learning 
RNN Recurrent neural networks  

Fig. 1. A brief history of Digital Twin developments.  
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Scopus since 2010). In contrast, only around 50 papers could be found 
for process or energy DT where the research focused on process heat 
and/or energy efficiency for the process and energy industries. Conse
quently, process and energy DTs are emerging areas in the field of dig
italisation that need greater attention due to the pace and scale required 
to reduce greenhouse gas emissions in the face of global environmental 
challenges. The authors of this paper view the terms energy digital twin 
and process digital twin as synonymous and abbreviated to EDT, 
whereas the generic digital twin class is abbreviated to DT. 

Given the emerging status of EDT, researchers need to coordinate 
ongoing efforts in delivering meaningful research outputs and impact on 
the industries to help with the immediate need for energy decarbon
isation. The need for a systematic review of EDT technology is therefore 
warranted. In addition, there is a further need to develop a clearer 
definition of DT and EDT as terms, their attributes and how to classify 
the different DT fidelities. At present, definitions are often overly 
tailored to one specific application overlooking the fact that DT tech
nology has become an overarching concept class that has value for many 
applications. 

1.4. Review aim and novel contributions 

This review aims to classify and discuss the design and application of 
energy (or process) digital twins to minimise lifecycle energy use and 
emission footprints and uptake renewable energy generation in the 
process and energy industries. To achieve this aim, this paper presents a 
thorough literature review that focuses on answering the following 
research questions:  

● How does academic and industrial literature define DT technology 
and classify the various types of DT including EDT?  

● What process and energy industries have interest in, or currently 
apply, EDT technology and what drives their implementation?  

● What methods (e.g., algorithms, techniques, and frameworks) are 
reported as EDT developments and at what stage are the de
velopments (e.g., research versus industrial implementation)?  

● What are the key directions for future research in the EDT field for 
applications to the process and energy industries? 

The review makes the following novel contributions to the literature:  

● A novel multi-dimensional classification framework for DTs. 
● Identifies current limitations to DT technology use in industrial en

ergy management.  
● A proposal of EDT application framework for industrial sites and 

local areas. 

The remainder of this paper is structured as follows. Section 2 pre
sents various definitions of DTs currently dominating the literature, 
contrasts and synthesises them, and proposes a novel and generalizable 
definition of DT as well as an associated classification framework. Sec
tion 3 outlines the method of the systematic literature review with focus 
on EDTs, and Section 4 presents its results with a focus on applications 
and methods of EDTs in the process heat and energy industries. Based on 
the review findings, Section 5 outlines key future directions for the 
research of EDT technologies and a framework for EDT application to 
industrial sites and local areas, and Section 6 concludes the paper. 

2. Digital twin technology: definition and classification 

This section compares and contrasts the various definitions of DTs 
currently used in both academic and industrial literature to propose a 
more generic DT definition that can be broadly applicable to all areas 
with interest in DTs. The novel definition is coupled with a classification 
framework for DTs that highlights the maturity level that a given DT has 
achieved on each of the proposed attributes of looks-like, behaves-like and 

connects-to, as well as the extra-functional dimensions of problem-scale 
and time-granularity. The section concludes by demonstrating how the 
new classification framework can help characterise EDTs. 

2.1. Definitions in the literature 

To provide a comprehensive literature review, 10 DT definitions 
from academic publications and 9 DT definitions from commercial and 
industrial companies, i.e., Microsoft, Siemens, IBM, PSE, KBC, Emerson, 
Ansys, Aspentech and Sight Machine, are listed in Table 1. The DT 
definitions can also be plotted as a word group cloud, as shown in Fig. 2. 
As a result, the root word terms: ‘digital’, ‘physical’, ‘virtual’, ‘system’, 
‘process’ and ‘product’ are illustrated as the most common terms among 
all definitions. 

Each of the definitions (Table 1) contain the same core elements as 
the original definition of Grieves [11] but were modified to suit a spe
cific application area. Definitions from industry (e.g., by Microsoft and 
PSE) adapted their wording to highlight the strengths of the specific DT 
platform that they offer, as opposed to presenting a generalised defini
tion. Some definitions reference the degree to which a virtual part 
contains the likeness of the physical part (often using the term fidelity), 
but the associated purpose was not often clearly stated. Additionally, the 
behaviour attribute of a DT is significantly different between the 
different applications and references. 

The DT concept has grown in popularity and now crosscuts multiple 
research disciplines and industries. The weakness of many of the liter
ature definitions is that they embed a distinct DT focus for a single 
discipline or application that does not translate well to others. Concur
rently, there is a need to distinguish between the different types and 
fidelity of DT representations. To address these issues, this paper uses 
generic language to define and classify DTs for a broad range of disci
plines and applications. The interested reader is referred to Jones et al. 
[21] and Liu et al. [22] for historical reviews of previous literature for 
the DT concept in the general manufacturing space. 

Studying the variety of definitions presented in Table 1, highlights 
the breadth of expectations put on the concept of DTs. A general notion 
that can be extracted is that a DT is a digital representation of, and 
connects to something physical; however, what exactly is represented 
varies among product design, process design, asset operation, and sys
tem management, depending on the background and goals of the party 
proposing the definition. In general, a gap emerges in terms of the 
transferability of definitions beyond the proposed domain. 

2.2. The proposed classification framework 

As a generalised definition, a DT is a digital (or virtual) representa
tion that looks-like, behaves-like, and connects-to a physical part or 
system with the goal of improving or optimising decision making for any 
time horizon. The combination of all three attributes defines the DT 
paradigm shift, setting DTs apart from traditional representations that 
capture either the likeness or the behaviour of a physical part or system 
but do not have a close connection to the physical system. Although all 
three attributes are necessary to achieve the best outcomes, the fidelity 
of each attribute varies depending on the purpose and application of the 
DT. In this light, DT is an overarching class that encapsulates many 
possible variations and provides freedom for researchers from different 
disciplines to progress the area of DT. 

The following subsections discuss the individual DT attributes with 
examples that relate to the EDT area, the physical- and time-scale of DT 
application, and how to interpret the DT classification framework. 

2.2.1. The looks-like attribute 
Likeness is the attribute of a DT that expresses the appearance, 

structure, or architecture of a part or system. This attribute, from 
simplest to most detailed, can be classified into three categories: 
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1. 1-D representation, e.g., a process flow diagram.  
2. 2-D representation, e.g., a process flow diagram with dimensions and 

coordinates.  
3. 3-D representation, e.g., a virtual and augmented reality plant 

model. 

EDTs often target low levels of the looks-like attribute because sig
nificant gains can be achieved through modelling the process behaviour 
(i.e., behaves-like attribute). With pressure to reduce energy and emis
sions, existing processes and sites have started to repurpose existing 
equipment and retrofit new upgrades, which naturally requires a deeper 
understanding of plant layout and space. 

2.2.2. The behaves-like attribute 
Behaviour is the attribute that mimics the outputs of a system for a 

given set of inputs with respect to time. This attribute, from simplest to 
most detailed, can be classified into three categories:  

1. Single-state, static information, e.g., an average process system state.  
2. Discrete, event-driven, multiple steady-states model, e.g., multiple 

equilibrium process system states.  

3. Dynamic, time-driven, transient model, e.g., model predictive 
control. 

In the process and energy industries, process simulation is a common 
tool to understand process behaviour and dynamics and to minimise site 
energy use and emissions. Global process systems engineering com
panies (e.g., Aspentech, KBC, and Siemens) provide well-known process 
simulation software programs, which are now becoming recognised as 
EDT’s with high behaves-like fidelity but low looks-like fidelity. 

2.2.3. The connected-to attribute 
The connectivity between the DT and the physical system is an 

essential feature. It expresses how data flows between the physical and 
digital domains either in an automated, non-automated or mixed 
manner. This attribute, from simplest to most detailed, can be classified 
into three categories:  

1. All indirect (e.g., non-automated) data flow between the physical 
part or system and the DT (also referred to as a Digital Model), e.g., 
CAD drawing based on a physical system. 

Table 1 
Definitions of digital twins (DT) in academia and industry.  

No. Refs. Year/ 
Company 

Definition (quoted from the reference) Key points 

1 [23] 2012 A DT is an integrated, multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system that uses the 
best available physical models, sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin. 

Integrated, mirror 

2 [24] 2013 A cyber-physical model is a DT of the real machine that operates in the cloud platform and simulates the health 
condition with an integrated knowledge from both data-driven analytical algorithms as well as other available physical 
knowledge. 

Cloud platform 

3 [11] 2014 The DT concept model contains three main parts: a) physical products in real space, b) virtual products in virtual space, 
and c) the connections of data and information that ties the virtual and real products together. 

Connection 

4 [25] 2014 A DT is a life management and certification paradigm whereby simulations consist of the as-built vehicle state, as- 
experienced loads and environments, and other vehicle-specific histories to enable high-fidelity modelling of 
individual aerospace vehicles throughout their service lives. 

Fidelity 

5 [15] 2015 DT concept is the next wave in modelling and simulation, and the simulation is a core functionality of systems using 
seamless assistance along the entire life cycle, e.g. supporting operation and service with a direct linkage to operation 
data. 

Seamless (connection) 

6 [26] 2017 A DT is a computerised model of a physical device or system that represents all functional features and links with the 
working elements. 

Representation 

7 [16] 2018 A DT is a living model of the physical asset or system, which continually adapts to operational changes based on the 
collected online data and information, and can forecast the future of the corresponding physical counterpart. 

Living 

8 [27] 2018 A DT is a set of virtual information that fully describes a potential or actual physical production from the micro atomic 
level to the macro geometrical level. 

Virtual information 

9 [19] 2018 Based on previous literature, authors proposed characteristics of DT including: (a) real-time reflection; (b) interaction 
and convergence; and (c) self-evolution. 

Adaptivity 

10 [20] 2018 Classification of DTs into three subcategories, according to their level of data integration including digital model, 
digital shadow, and digital twins. 

Data integration, 
connectivity 

11 [17] 2019 A DT is a virtual instance of a physical system (twin) that is continually updated with the latter’s performance, 
maintenance, and health status data throughout the physical system’s life cycle. 

Adaptivity 

12 [18] 2019 DT can be regarded as a paradigm that uses selected online measurements, which are dynamically assimilated into the 
simulation world, with the running simulation model guiding the real world adaptively in reverse. 

Dynamic, bi-directional, 
adaptive 

13 [28] 2019 DT refers to a virtual object or a set of virtual things defined in the digital virtual space, which has a mapping 
relationship with real things in the physical space. 

Mapping 

14 [29] Microsoft Microsoft Azure DTs (proposed in 2018): This Internet of Things (IoT) platform provides the capabilities to fuse 
together both physical and digital worlds, allowing you to transform your business and create breakthrough customer 
experiences. 

IoT platform 

15 [30] Siemens The DT is the precise virtual model of a product or a production plant. Precise virtual model 
16 [31] IBM A DT is a virtual representation of a physical object or system across its lifecycle, using real-time data to enable 

understanding, learning and reasoning. 
Real-time data 

17 [32] Emerson Emerson’s Digital Twin Starter Package (proposed in 2019) claims to be a first step towards a DT of an industrial 
production plant. It provides a virtual replica of the control system, non-intrusively mimicking operations. 

Replica 

18 [33] Aspentech DTs — virtualized copies of physical assets and their operating behaviours — will play key roles. They will also 
fundamentally change how humans work, interacting with intelligent systems, and virtual models (“twins”). 

Virtual copy 

19 [34] KBC KBC introduced Petro-Sim 7 and Process Digital Twin in 2019, which can provide an integration with the OSIsoft’s PI 
historian and Asset Framework. 

Integration 

20 [35] PSE 
(Siemens) 

PSE developed gPROMS Digital Application Platform in 2019 covering all key activities across the process design and 
operational life cycle through the creation of digital process twins. 

Platform 

21 [36] Sight 
Machine 

A DT is a dynamic, virtual representation of a physical asset, product, process, or system. It digitally models the 
properties, conditions, and attributes of the real-world counterpart. 

Dynamic 

22 [37] Ansys Ansys released ANSYS 19.1 (in 2018) containing the Twin Builder feature, which is an open solution that allows 
engineers to create simulation-based DTs–digital representations of assets with real-world or virtual sensor inputs. 

Representation  
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2. Direct data flow (e.g., automated) from the physical part or system 
and indirect data flow from the DT in return (also referred to as a 
Digital Shadow), e.g., a plant operator’s process data display.  

3. Two-way direct data flow between the physical part or system and 
the DT (also referred to as a Digital Manager), e.g., a plant control 
system. 

The proposed classification is a subtle shift from Kritzinger et al. 
[20], who described the three levels of the connected-to attribute using 
the terms Digital Model, Digital Shadow, and Digital Twin. Under their 
definition, a DT requires direct and automated data flow, which suits 
well the discipline of control engineering but not necessarily others (e.g., 
plant design and retrofit) that do not happen at runtime. Given the broad 
interest in DT, the term Digital Manager is introduced here to describe 
the essential feature of a DT’s connected-to attribute while avoiding 
conflation with the overarching class of DT. 

The connected-to attribute is critical for EDTs that seek to implement 
real-time dynamic optimisation to minimise energy use and emissions 
and maximise the product profit. For example, Leng et al. [38] imple
mented DT for parallel controlling of smart workshop with two way 
direct data flow. However, not all applications of EDTs rely on two-way, 
real-time data communication, e.g., plant evolution and retrofit, but 
should still be counted under the broad DT class. 

2.2.4. Physical- and time-scale of the application 
The physical scale of application of a DT is also useful to include in 

the classification process to demonstrate the range that various re
searchers have studied. This paper defines four scales for the classifi
cation process:  

1. Nano, e.g., molecular level  
2. Micro, e.g., single operation or part  
3. Meso, e.g., collection of operations, including a factory or site  
4. Macro, e.g., a community, local area, or region 

The time-scale of the application is closely linked to the desired 
outcomes and required decisions over various time horizons. 

In the case of EDTs applied to the process and energy industries, 
Fig. 3 presents some of the possible time-horizons and improvement 

opportunities, from seconds, e.g., process control, through to multiple 
decades, e.g., process design. DTs can enable improvements in all the 
time horizons to produce improved outcomes. To reiterate, different 
levels of DT fidelity are appropriate to deliver the desired outcomes. For 
example, process control that operates in real-time needs a high-fidelity 
DT that behaves-like and connects-to the process but does not require a 
high degree of looks-like. In contrast, a process design requires high fi
delity in terms of looks-like and behaves-like, and less in the connects-to 
attributes. DTs used for new process designs, i.e., greenfield de
velopments, are called pre-digital twins. 

2.2.5. Interpretation of the classification framework for energy digital twins 
Different applications require different types and fidelity of likeness, 

behaviour, and connectivity to be effective. Greater fidelity does not 
necessarily equate to a better EDT, rather it may just result in an over- 
engineered EDT. The simple classification approach is developed to 
help identify the types of EDTs in a more precise manner (Fig. 4) and to 
highlight research gaps. This review applies the classification approach 
to a subset of DT research that focuses on the process heat and energy 
industries, which are sometimes referred to as process digital twins or 
energy digital twins. 

3. Review method 

This systematic review focuses on the literature that discusses and 
applies EDT technology to the process and energy industries. This sec
tion summarises the review approach and recent, related work for the 
process and energy industries with a focus on EDT publications to 
identify gaps in the field. The proposed generic DT classification 
framework is applied to distil the essential features of current research 
directions and applications. This information will help other researchers 
to address the gaps in future needs of the process and energy industries. 

3.1. Databases 

To better cast a wider net, given the multidisciplinary nature of DT 
technology, the search included a variety of databases, including:  

● Web of Science  
● Scopus  
● Google Search  
● Google Scholar  
● ScienceDirect 

In addition, Google Search was used to find industry-oriented pieces 
of work that do not appear in strictly academic sources. 

3.2. Inclusion and exclusion criteria 

To ensure the selected papers met the needs of this study, the selected 
studies conformed to the following criteria:  

● Originate in a scientific peer-reviewed venue or be technical reports 
and white papers produced by respectable industrial sources.  

● Be written in English.  
● Published between January 2010–April 2021. 
● Must focus on DT concepts, key technologies, and industrial appli

cations on process heat, energy, and decarbonisation.  
● Not be a duplicate (search engines sometimes produce multiple links 

to the same work). 

3.3. Search methodology 

The review comprised the following three levels: 

Fig. 2. Digital twin definition word-root cloud.  
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● Level 1: basic data collection from the designated databases to 
identify proper keywords by checking paper titles and abstracts.  

● Level 2: automated search based on Level 1 search strings, followed 
by manual reading of the abstracts of the selected papers to filter the 
most promising papers.  

● Level 3: full reading and analysis of the selected papers while also 
recursively including further studies via forward and reverse snow
ball sampling, with a stoppage criterion at 50 papers. 

4. Results and discussion 

This section first presents general statistics of the paper selected by 
the review methodology presented in Section 3, followed by a discussion 
on the discovered trends of EDT usage and implementation for the 
process heat and energy industries. 

4.1. Review statistics 

4.1.1. Keyword search 
To better target the best keywords, the first step in the process was to 

skim through the top ten results on Google Scholar, in addition to 
leveraging the authors’ experience in Process, Chemical and Software 
Engineering. The efficacy of these keywords was assessed via a level-1 
search on Google Scholar focusing on recent papers published in 2021 
to better capture cutting-edge trends. Table 2 counts the number of 
papers discovered per search string and per different level of filtering: 
full-text, abstract-only and title-only. 

The results, which are sorted by most hits in full-text search, suggest 
that just using the terms “Digital Twin”, “Smart Energy Systems”, “In
dustry 4.0” and “Software Engineering” is not specific enough for a 
focused survey because of the large volume of papers being published 
recently. Consequently, and after skimming through the abstracts of the 
most promising papers, the following search terms were selected for the 
level-2 abstract screening part of the review, which not only focused on 
Digital Twins but also contained keywords that implied a technical focus 

on the process and energy industries (highlighted in Table 2). 

4.1.2. Abstract screening 
The basic search revealed a total of 2449 search hits, whose distri

bution per database is displayed in Table 3. 
Next, the titles and abstracts of the first 30 search results per search 

string and database were manually examined to assess their relevance to 
process and energy systems. This resulted in a list of 53 papers that met 
the selection criteria of the study and were promoted for full-text 
reading. 

4.1.3. Full-text screening 
The final reading stage in the review process was to understand, 

classify and summarise the collective contribution of the 53 papers that 
pass through the previous filters. 

Fig. 5 displays the primary and secondary drivers behind the studied 
papers. The primary motivator for EDT adoption in the process and 
energy industries are energy efficiency, closely followed by profit and 
decarbonisation. The secondary motivators are dominated again by 
energy/efficiency and then profit. This leads to the conclusion that the 
main objectives a successful process and energy EDT needs to fulfil are: 
(1) the optimisation of efficiency for energy usage reduction, to enable 
(2) a pathway for effective decarbonisation, while (3) the costs of the 
transition remain low. 

Literature review statistics for publication type and applications for 
different industries for all publications are shown in Fig. 6(a) and (b) 
respectively. Journal papers and conference papers are 50% and 48% 
respectively of the source materials as shown in Fig. 6(a). The large 
fraction of conference papers (approximately half) indicates the 
research on EDTs is at an early stage compared to other industries such 
as manufacturing in general. In Fig. 6(b), regarding EDT applications for 
different industries, the dominant fraction is for generic processing 
(37%) which includes generic unit operations such as distillation col
umns, furnaces, and heat exchangers. And most of these applications are 
specific case studies. 30% of the applications were for the energy 

Fig. 3. Time-scales for different types of digital twin goals in the process and energy industries.  

Fig. 4. Classifying EDT families using the proposed classification framework.  
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industry, but most of the applications focussed on EDT conceptual 
development and study of the EDT architecture instead of a real 
implementation. 

4.2. Digital twin classification 

A categorical review from 53 publications was conducted according 
to their content and different perspectives: type, DT class, specific 
research area, application scale, paper aim, and main technology used in 
the publication. Since some publications did provide clear categorical 
information mentioned above, 17 publications were selected for the 
categorical review, the results were listed in Table 4. 

The classification uses DTijk (i = 1…3, j = 1…3, k = 1…3) to 
represent each DT class defined in Section 2.2.1, the subscripts i, j, and k 
represent the DT looks-like, behaves-like and connected-to attributes, 
and the numbers of i, j and k indicate which of the 3 levels within each 
attribute is achieved. For example, DT131 represents a DT class having 
the 1-D representation look-like attribute, the dynamic, time-driven, 
transient model behaves-like attribute, and the mixed direct/indirect 
connected-to attribute. This classification method summarises DT 
complexity for ease of understanding, and aids in highlighting DT var
iations that are underdeveloped or under researched. 

The distribution of results using the proposed classification frame
work are displayed in Fig. 7. These results highlight a general gap in the 
mid-level of likeness, i.e., 2-D representations. Additionally, most pro
posed EDT focus lack full two-way connectivity with the physical plant; 
thus, most studies fall primarily under the digital model or digital 
shadow grouping. 

Considering the EDT likeness class: most papers (78%) use 1-D rep
resentation (e.g., block flow diagrams); few papers (5.5%) consider 2 D 
representation (e.g., researchers in one study found optimal reactor size 
design through a 2-D EDT [37]); and 14% papers used 3-D representa
tion. Concerning the EDT behaviour class, the study of dynamic 
behaviour dominates current EDT studies for the process industries 
(~60% of papers). When it comes to the EDT connectivity class, the 
majority of the research focused on digital models (50%) and most of 

them were case studies; about 25% of papers concerned digital manager 
type connectivity, but most of them were pitched at the conceptual level. 

4.3. Application to product and asset life cycles 

EDT applications in the literature cover all aspects of the product (or 
asset) lifecycle. The three categories or phases defined by Liu et al. [22] 
for all EDT applications are used in this paper, namely design, 
manufacturing, and service phases. The sub-categories for each phase 
were modified for the process heat industry based on the original defi
nitions in Ref. [22] as follows. 

Design phase  

1) Optimisation: An EDT can help designers to determine all the design 
parameters for an optimally performing process to minimise energy 
use. An EDT can also be used for new process and plant design or can 
be used for retrofitting existing processes and plants to improve 
product quality, production rate and energy efficiency. A future 
application should the integration of renewable energy, both on-site 
and in the local area at the site-edge. 

2) Data generation: For some processes, engineers may not have suffi
cient data for designing the process—for example, only lab-scale data 
may be available. An EDT may be used to generate needed data to 
rebalance a dataset and/or estimate untested operating states. 
Building accurate models from data using, e.g., machine learning has 
significant potential to feed into energy optimisation models.  

3) Virtual evaluation, verification, and validation: An EDT can be an 
economical tool for testing the designed process/plant. A bottleneck 

Table 2 
Number of papers discovered per search term/string during level-1 search.  

Pilot Iteration Search Term/ 
String 

Full-Text Hits 
(2021) 

Abstract Hits 
(2021) 

Title Hits 
(2021) 

Digital Twin 9830 2430 728 
Digital Twin & Industry 4.0 3490 320 8 
Smart Energy Systems 1920 106 30 
Digital Twin & Software 

Engineering 
798 11 1 

Digital Twin & Energy 
Systems 

598 21 1 

Digital Twin & Reactor 321 21 0 
Digital Twin & process 

industry 
232 13 0 

Adaptive systems & Digital 
Twin 

184 6 0 

Digital Twin & distillation 138 5 0 
Digital Twin & 

decarbonisation 
136 4 0 

Intelligent Digital Twin 128 11 6 
Digital Twin & heat 

exchanger 
124 2 1 

Self-Adaptive Systems & 
Digital Twin 

49 1 0 

Knowledge-driven Digital 
Twin 

46 0 0 

Adaptive Digital Twin 29 1 1 
Digital Twin & evaporator 29 0 0 
Digital Twin & Process heat 26 0 0 
Engineering Digital Twin 23 4 0 
Digital Twin & reboiler 8 0 0 
Personalised Digital Twin 6 0 0 
Self-Adaptive Digital Twin 0 0 0  

Table 3 
Number of papers discovered per search term/string at first level.  

Search String Web of 
Science 

Scopus Google 
Scholar 

ScienceDirect 

“Digital Twin” AND “Process 
Heat" 

0 61 59 17 

“Digital Twin” AND “Process 
Industry" 

10 780 544 159 

“Digital Twin” AND 
(“Decarbonisation” OR 
“Decarbonization") 

3 4 252 30 

“Digital Twin” AND 
(“Reboiler” OR 
“Evaporator” OR “Heat 
Exchanger") 

3 12 338 177  

Fig. 5. Drivers underpinning research in process and energy digital 
twin technology. 
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unit can be identified in early-stage design, and extreme operating 
conditions can also be tested. 

Operation phase  

1) Process monitoring: An EDT may provide real-time monitoring in a 
better way compared to traditional monitoring technology. An EDT 
has the potential to integrate real-time data with a 3-D model 
virtually and provide a platform for analysing historical, current, and 
predicted data from both the virtual (digital) and physical twins. For 
example, a Kalman filter could be used to correct for sensor noise and 
dynamics.  

2) Production control: Traditional production control heavily relies on 
measurements for the physical process/plant. Industrial engineers 
use models to help control, e.g., model predictive control (MPC), but 
the model only partially covers the process. The EDT can enhance 
current production control methods to reject disturbances and 

maintain a tight quality specification range through the data/infor
mation connection between virtual and physical parts.  

3) Process prediction: All processes/plants face variation problems (e. 
g., raw material feed variation, utility system fluctuation). An EDT 
can provide predictions on how variations impact a physical process 
and plant. By implementing soft sensing technology e.g., by using 
machine learning methods, an EDT can also provide predictions of 
critical process variables which are difficult to be measured directly 
or expensive for direct measurement.  

4) Process optimisation and production planning: Traditional process 
optimisation is commonly based on design information, and pro
duction planning is based on static information. These approaches 
show poor performance for dealing with disturbances and un
certainties. EDT can significantly improve process optimisation and 
production planning with rich monitoring and prediction informa
tion generated by an EDT. 

Fig. 6. Distribution of papers’ venues and industrial domains.  

Table 4 
Categorical review of EDTs in the literature.  

Paper Type DT 
likeness 

DT 
behaviour 

DT 
connectivity 

Specific area Application 
scale 

Paper aim Tools and/or 
Technology 

[39] Case study 2 D Discrete 
event 

Digital Model Reactor Meso Process Design AspenPlus 

[40] Case study 1 D Discrete 
event 

Digital Model Thermal power plant Meso Optimisation Thermoflow simulation 

[41] Case study 3 D Discrete 
event 

Digital Model Glass product Meso Design Multi-View 
synchronization 

[42] Concept 3 D Static Digital Model Industrial process Micro Modelling Simulation 
[43] Case study 1 D Dynamic Digital 

Shadow 
Cooling tower Meso Prediction Data-driven approach 

[44] Case study 2 D Dynamic Digital 
Shadow 

Wind turbine Meso Prediction ANSYS Fluent 

[45] Concept 1 D Dynamic Digital Model Furnace Micro Modelling Hybrid model 
[46] Case study 1 D Dynamic Digital 

Shadow 
Multi-effect 
evaporation 

Micro Prediction Simulation 

[47] Case study 3 D Dynamic Digital 
Shadow 

Food refrigeration Nano Prediction COMSOL 

[48] Case study 1 D Discrete 
event 

Digital 
Shadow 

Furnace Meso Optimisation, Retrofit UniSim Design, Matlab 

[49] Review, concept, 
case study 

1 D Dynamic Digital Model Energy Meso DT architecture Hybrid model 

[50] Case study 1 D Dynamic Digital 
Manager 

Steam turbine Meso Monitoring Hybrid model 

[51] Concept 1 D Discrete 
event 

Digital 
Shadow 

Petrochemical 
industry 

Meso Production 
optimisation 

Machine learning 

[52] Case study 3 D Dynamic Digital 
Shadow 

Solar Drying Nano Monitoring COMSOL 

[9] Review – – – Processing Meso Data-driven energy 
saving 

AI, IoT, Blockchain 3.0 

[53] Case study 1 D Dynamic Digital Model Thermal process Micro Control design Switched dynamic 
model 

[54] Concept 1 D Discrete 
event 

Digital Model Process Meso Automatic model 
generation 

BALAS  
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5) Process training: Both industrial engineers and academic researchers 
have pointed out great potential for EDT implementation for 
training. 

Service phase  

1) Predictive maintenance: A similar idea to process prediction since an 
EDT can cope with disturbances and uncertainties, it can also provide 
more accurate maintenance times.  

2) Fault detection and diagnosis: By comparing process variables from 
both virtual and physical processes, engineers can quickly identify 
fault locations. With the help of EDT, fault diagnosis can be also 
conducted to identify fault type/s or resource/s.  

3) Virtual testing: Since a EDT is the digital representation of the 
physical twin, it can be used to test certain operations under situa
tions in which the failure of the physical twin leads to great loss and 
damage. 

The applications for design, processing and service listed in Table 5 
reflect a fraction of the EDT technology applications in the process and 
energy industries: most of the applications (62%) are for the processing 
phase, around 35% of applications belong to the design phase, and only 
a few applications (3%) focus on service phase. 

4.4. Software architecture 

This section discusses software architecture models and methods 
proposed in the surveyed papers based on the methodology presented in 
Section 3. Overall, the development of EDTs is an interdisciplinary 
process. As such, with the growth of the DT sector, a number of lessons 
need to be drawn by the discipline of software engineering, which can 
inform how such software should be designed, tested and maintained. 
Software architecture provides this high-level overview by describing 
the main components DTs require and how they interact with each other 
and with the physical world. Eventually, the field needs to specialise into 
the software engineering of digital twins. 

Several DT architectures have been proposed, such as a 3D-DT ar
chitecture [10], a 5D-DT architecture [58] and a 5C architecture [59]. A 
literature review about DT architectures can be found in Ref. [48]. A 
summary of DT architecture development relevant to EDTs is presented 
in Table 6. 

A software engineering-oriented examination of these five papers 

indicates a high level of variance among the level of detail in the pro
posed software architectures and in certain cases, software processes to 
develop EDTs. The most comprehensive paper from a software engi
neering perspective, Steindl et al. [49], proposed a generic DT solution 
that could apply to EDTs, and included design diagrams for a layered 
software architecture spanning across six layers: Business logic; Func
tional; Information; Communication; Integration; and Asset. It also 
proposed ontology diagrams discussing the classification of software 
services to be exposed, as well as a RESTful API, a standard for HTTP 
connections over the Internet, to enable easier interoperability with 
existing software. The paper identified six domain-specific types of 
services: reconfiguration, control, prediction, diagnostic, monitoring, 
and simulation; as well as software management services. Lastly, the 
study defined an interface that all these services must implement 
comprising the following end points that: (1) retrieve service informa
tion, (2) retrieve model information, (3) train model, (4) inference using 
a model, (5) upload data, and (6) upload model. 

Next in order of detail, Ors et al. [60] developed concepts for an 
AI-based operational EDT and presented a component diagram for the 
proposed architecture. Focusing on operations, the architecture inputs 
on-line measurements from the physical asset and various exogenous 
variables, while it outputs directly to the physical asset, updating its 
process and control data. The authors split the internal structure of their 
EDT into four main components: (1) an AI component responsible for 
performing surrogate & predictive modelling, optimisation and control 
using AI methods; (2) a traditional advanced process control component 
executing process-engineering oriented methods for scheduling, opti
misation and control); (3) a data management and repository module; 
and (4) a process modelling component. The study also discussed that 
separate visualisation components need to be exposed to the human 
operator of the EDT and the deployment on the actual physical plant 
needs to be domain specific. 

Focusing on the power industry, Huang et al. [61] presented a logical 
architecture diagram with four elements: physical entity, virtual entity, 
domain-specific services, and data. All these four elements were inter
connected, which from a software engineering perspective might indi
cate a violation of the principle of separation of concerns. The study 
proposed that the virtual entity should contain six types of models, some 
of which appear to overlap, to meet the power industry requirements: 
geometric, physical, behaviour, unit, system, and complex system. 
Additionally, the paper proposed the usage of artificial neural networks 
as a method to perform data fusion for the various incoming data 
streams. 

Min et al. [51] focused on the petrochemical industry and vaguely 
described processes operating in a continuous loop to regulate the 
plant’s production plan, elements and controlling commands. Based on 
ML algorithms, they proposed concepts for model training, model 
evaluation, and online deployment, while maintaining connections with 
existing profit and market modelling and simulating/optimising soft
ware packages. It should be noted that this paper emphasised the 
reusability of existing modules over developing everything ground up. 

The final paper with a strong software engineering angle, Blume 
et al. [43], presented a case study on cooling towers and, unlike the 
previous four papers, presented a software process to develop EDTs. In 
particular, the study described three EDT development steps: (1) busi
ness (and/or process) understanding; (2) data understanding, prepara
tion and modelling, which included data selection, aggregation, feature 
selection, mining, hyperparameter tuning, transformation, outlier 
filtering; and (3) final evaluation and deployment. 

Overall, these papers used software architecture diagrams and dis
cussion primarily to represent, analyse and validate software re
quirements of EDT technology, rather than represent their actual 
implementation, which is a strong indication that this field has not 
settled yet. All of these papers assumed the process as a static system cut 
off from its environment and emphasised short-term operations. How
ever, asset lifecycle improvement, including their retrofit, reconfiguring 

Fig. 7. Prevalence of different EDTs in process heat and energy literature.  
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and retirement, will significantly contribute toward energy and green
house gas emissions reduction, for instance via retrofitting heat ex
change networks [62]. Additionally, the integration of the site with its 
local renewable energy generation, industry, and community will be 
crucial, for instance by enabling it to benefit from exchanging heat and 
power [63]. As such, further research is needed to elicit software re
quirements and subsequently design EDT software that considers the 

industrial site as a constantly evolving system. 
Besides software requirements elicitation and functional software 

design, this review also revealed a general lack of discussion around the 
satisfaction of non-functional requirements, such as performance, cyber 
security, and safety. Crucially, there was little discussion around EDTs 
being able to verify or the very least validate their operational decisions 
at run time before actuating them on a real plant. EDTs will be assisting 
in the operation of mission-critical systems where software failure can 
have catastrophic effects. Encompassing such quality assurance pro
cesses under uncertainty at the software level would de-risk the more 
rapid uptake of EDTs in the industry and make them safe and secure. 

4.5. Modelling and simulation packages 

Modelling and simulation play a crucial role within EDT technology. 
For a complex process, commercial process simulation software (e.g., 
Aspen HYSYS) is commonly used for building the EDT virtual plant. 
Their large user base, standardised approaches and technical support 
enables quality assurance in the application to large, complex processes. 
Such process simulators are usually examples of first-principles model
ling (white-box modelling) with models relying on a fundamental un
derstanding of physio-chemical phenomena. Researchers have also 
developed first principles-based models, but these are usually applied to 
small scale processes. Data-driven modelling (black-box modelling) has 
been implemented in many industries with new application technologies 
currently blooming, such as big data analysis, IoT and machine learning. 
Hybrid modelling (or grey-box modelling), which is a combination of 
white box and black box modelling, has also been used for EDT study. A 
summary is listed in Table 7. As mentioned previously in this review, 
most of these applications are of the 1D looks-like and dynamic behaves- 
like and indirect connects-to classes of DT and are proposals rather than 
industrial implementations. 

5. Directions of future research 

Many researchers have discussed DT challenges. For example, Fuller 
et al. [67] stated that the DT challenges were similar to data analytics, 
IoT and IIoT, and other researchers pointed out more DT challenges such 
as standardisation [20] (addressed in this paper), multidisciplinary 
cooperation [67], a consistent framework of DT [68], and complexity of 
implementation [69]. Comprehensive EDT development is inherently 
multidisciplinary, including fields such as chemical, mechanical, elec
trical, civil, and software engineering, data science. Because multidis
ciplinary research goals target different directions and focuses, there is a 
challenge in bringing together all the contributions into a DT 
framework. 

5.1. Advancing energy digital twin technology 

Based on the literature review and new classification framework, this 
review concludes with an overarching concept that defines how to 
implement EDT technology in the process heat and energy industries at a 
macro scale. The literature review showed that EDT technology can 
enable greater integration and optimisation within industrial (and 
commercial) sites leading to step increases in energy efficiency and 
renewable energy uptake. The implementation can also be extended to 
the “site edge” to further minimise resource consumption, waste, and 
emission footprints. The site edge refers to the community in the local 
area surrounding the site, such as other industrial sites, commercial and 
public operations, and residential housing. In many ways, EDT tech
nology has the potential to help operationalise and synthesise the con
cepts of circular economy and circular integration [70], industrial 
symbiosis and industrial ecology [71], total site integration [72], and 
advanced site-wide control. Fig. 8 illustrates a new concept of how to 
envision an EDT’s interaction with an industrial site with a detailed 
description to follow. 

Table 5 
EDT applications for the process and energy industries.  

Phase Specific purpose Ref. Highlights 

Design Virtual testing [41] Iterative optimisation between static 
design and dynamic execution was 
implemented on a hollow glass 
production line. 

Optimisation [39] Design of a multi-tubular fixed bed 
reactor. 

[48] Retrofit of methane reformer furnace 
system was proposed. 

Processing Process 
optimisation 

[40] Cost-effective impacts on plan 
operating economics were assessed for 
a 320 MW coal-fired thermal power 
plant based on its digital model. 

[51] Production optimisation for the 
petrochemical industry was 
conceptually addressed using a 
machine learning-based EDT. 

Process prediction [43] The proposed data-driven EDT can 
provide power demand and cooling 
capacity predictions. 

[47] Fruit inside temperatures in a fruit 
processing plant can be predicted by the 
proposed digital shadow. 

[52] Fruit drying quality can be predicted by 
the proposed digital shadow. 

Process 
monitoring 

[46] Important variables were estimated 
from a digital model for monitoring 
purposes, and sensor miscalibration 
was identified by the proposed model. 

[50] An on-line monitoring system for a 
steam turbine was developed based on 
hybrid models. 

Production 
control 

[55] MPC control was implemented on a 
EDT of cooling systems. 

Process training [56] The authors proposed a concept of a 
smart 3d viewer for the facility/asset. 

Service Fault detection 
and diagnosis 

[57] EDT concepts for forecasting 
emergencies in the oil and gas industry 
were discussed.  

Table 6 
Overview of DT architectures suitable for EDTs for the process and energy 
industries.  

Architecture Ref. Proposed idea 

AI-based operational 
EDT 

[60] Proposed a new framework of operational EDT by 
introducing three key components: surrogate 
modelling, predictive modelling and AI supported 
optimisation and control. 

Data-driven EDT [43] A data-driven EDT framework was developed based 
on a cross industry standard process for data mining 
(CRISP-DM) concept. The framework was 
implemented for a cooling tower case study. 

Machine learning- 
based EDT 

[51] A EDT architecture including IoT information and 
machine learning for petrochemical production 
control was proposed. 

Power industry EDT [61] Different EDT structures for power plant control 
systems, online analysis of power grid and power 
system framework design were developed. 

Generic EDT [49] A generic EDT architecture for industrial energy 
systems was proposed. The architecture was based 
on 5D-DT architecture and was aligned with the 
information technology layers of the Reference 
Architecture Model Industry 4.0 (RAMI4.0).  

W. Yu et al.                                                                                                                                                                                                                                      



Renewable and Sustainable Energy Reviews 161 (2022) 112407

11

Industrial sites often contain multiple operations and processes, 
which output signals, measurements and other data that form the basic 
inputs to the EDT. The EDT may also receive inputs from the site-edge (e. 
g., measurement of rooftop solar energy in the community) and from 
externalities (e.g., weather data and forecasts). The strategic, multi- 
objective goals of the EDT (e.g., minimisation of lifecycle cost, energy, 
and emissions) and constraints (e.g., 100% renewable energy) are set by 
the business owner, which is influenced and constrained by government 
regulation. The proposed framework of EDT provides one standard so
lution to achieve the decision making process from the government 
regulations to the plant units. 

The outputs of the EDT include a wide range of effectors that enable 
the optimisation of site operations and assets. These effectors within the 
site may be automated or non-automated and include, for example, 
changes to control models and settings, plans to install new technology 
and retrofit existing technology, and information about the health of 
assets for predictive maintenance. An additional set of signals and ef
fectors are also transmitted from the EDT to the site edge to influence the 
control, operation, and installation of relevant assets in the community. 
Assets in the community could be energy sources or sinks and have a 
range of ownership models with respect to the site, including non-site 
ownership, cooperative ownership with the site, and site-owned assets 
located outside the site limits. The ownership model, and any subse
quent contract, dictates how the site can interact with the site edge asset. 
For example, a site may own rooftop solar panels in the residential es
tate, and therefore have complete control over their operation, and pay 
rent for the roof space to the individual owners. Or a site may send a 
price signal to the owners and operators of non-site assets to indicate the 
price level that the site is willing to pay for energy and services to in
fluence the amount of flow sold to the site. 

The EDT itself encompasses digital model, shadow, and manager 
components to accomplish the required exchange of information and 
complex computation. The framework also establishes a high-level 
relationship between the three levels of the connected-to attribute of 
DT technology. The Digital Model element contains the essential digital 
descriptions of each site assets’ likeness and behaviour (either dynamic 
or non-dynamic). The Digital Shadow element encompasses and applies 
multiple instances of the digital models to mimic and predict how the 
site (and other) assets perform with time. The Digital Manager element 
uses multiple instances of digital shadows to test, question and optimise 
asset operations in the digital domain before outputting valuable in
formation via the various effector signals to action change. 

5.2. Critical research directions 

Continuing from the overarching concept, urgent research directions 
in EDT technology that have been identified include the following:  

1) Enhancement of EDT applications in service 

EDT technology implementation on services has been reported in 
many systems and industries such as the automotive, manufacturing, 
building, and aircraft industries. A literature review about EDT imple
mentation in services can be found in Ref. [22]. Based on the present 
literature review, only a few papers focus on EDT applications in service. 
As many researchers point out that the service and maintenance should 
be a major contribution area of EDT, this should be a direction of 
continued development for EDT applications in the process heat and 
energy industry.  

2) Expansion of EDT to multiple application scales and the full lifecycle 

Current EDT study and applications are targeted on micro and meso 
scales, e.g., a certain operation unit such as a furnace and a power plant. 
To obtain overall system optimisation and efficiency, there is a need to 
expand the EDT scale to the macro scale which can integrate different 
power supplies such as solar, hydro and wind power with different de
mands from both industrial and residential sectors together. 

EDT developments for the process heat and energy industries 
commonly focus on one of three phases: design, processing, and service 
individually. In the future, EDT technology needs to cover the full life
cycle. For example, based on a current processing situation, a EDT could 
provide a suggestion on retrofitting the process to improve energy effi
ciency and an optimal maintenance service schedule simultaneously. 

Taking account of the full lifecycle also means there is the oppor
tunity to focus on lifecycle energy and emissions reductions. Many 
countries have set up target years to reach net-zero carbon-equivalent 
emissions, for example, 2050 for Europe, UK, New Zealand, and others. 
Researchers should use the EDT technology to help the process and 
energy industries to achieve net-zero-carbon targets by providing 
optimal process design using renewable energy, improving processing 
energy efficiency and obtaining optimal maintenance service schedule.  

3) Development of adaptive EDT technology 

It is well-known that processes change in performance with time (e. 
g., fouling), experience state transitions (e.g., cleaning), and operate in 
an ever-changing environment (e.g., external energy markets). There is 

Table 7 
A summary of modelling/simulation in EDTs.  

Model basis Software/Method Ref. DT class Process Units/Part 

Commercial simulation software (first 
principles) 

Thermoflow [40] DT121 Power plant Boiler, steam turbine, scrubber 
ANSYS Fluent [44] DT231 Wind turbine Wind turbine blade 
COMSOL [47] DT332 Food cooling Mango fruit 
COMSOL [52] DT332 Food drying Solar dyer, apple ring 
AspenPlus [39] DT221 Acrylic acid production Multi-tubular reactor 
Modelica [55] DT131 Cooling system Evaporator, tank, pump, heat exchanger 

First principles 3D Java (visualisation) [42] DT311 Pipelines Tank, connection pipes 
– [45] DT131 Industrial furnace Burner, isolation, energy recovery 
– [46] DT131 Multi-effect 

evaporation 
Evaporator 

Matlab [48] DT122 Reformer furnace Furnace, heat exchanger 
Data-driven CRISP-DM [43] DT132 Cooling tower Tank, pump, heat exchanger, cooling towers with 

fans 
Matlab/Simulink [64] DT132 Distillation (lab scale) Distillation column, condenser, heat exchanger 
Statistical method [65] DT121 Rotary furnace Furnace 
Machine learning [51] DT122 Catalytic cracking unit Reaction/regeneration systems, distillation 

Hybrid modelling Updating model 
parameters 

[50] DT133 Steam turbine Turbine, valve 

CFD (OpenSMOKE) + PCA [66] DT221 Combustion system Combustion  
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a need to develop a new type of EDT technology that detects and adapts- 
to these changes automatically. The attribute of self-adaptivity for an 
EDT adds the ability for the EDT to modify and recalibrate its behaviour 
and likeness under changing operating and external conditions, such 
that it satisfies operational goals and constraints (which may also vary 
with time) and accommodates possible future physical asset changes. 

Further, adaptivity can be expanded to include hardware reconfi
gurability. Similar and perhaps inspired by Field Programmable Gate 
Arrays (FPGAs), which can be changed at runtime to represent any type 
of logic circuit, a digital-twin driven automated plant-control system 
will be able to rapidly reconfigure processes, such as manufacturing, 
while assuring the change management [73]. Additionally, FPGAs 
themselves could be incorporated as part of the computer hardware that 
operates a plant, which will allow the rapid deployment of new 
fit-for-purpose control algorithms that will have been first tested on the 
EDT. All these will require the establishment of a, hopefully open, 
architectural model, specification languages and optimised reconfigu
ration and planning algorithms. This research directly falls on the 
boundary between the fields of self-adaptive systems (software and 
computer engineering) and process systems engineering.  

4) Enhancement of EDT platform security 

The process and energy industries are critical infrastructure in global 
supply chains of commodity and advanced products. If EDTs participate 
directly in monitoring and actuating a site, it provides a large attack 
surface for cybercriminals and hostile nation-states with the intent to 
gain leverage over their target. 

Research is needed to discuss what data can be monitored and how 
much of it should be sent to the cloud, which may risk greater system 
vulnerability. For instance, edge computing and federated learning 
could be used as a means to conduct first-pass training locally near the 
industrial plant before submitting a partially trained model, which 
would obfuscate raw-data, to a centralised location for further 
aggregation. 

Additionally, research is needed to design active and multi-layered 

security for the EDT platforms. Active security means the EDT itself is 
looking for and mitigating threats through self-protection mechanisms. 
Multi-layered security allows the first security layer to be penetrated to 
trigger a response and stop an attack in subsequent layers.  

5) Frameworks for EDT data ownership and sovereignty 

EDTs will need access to an abundance of data from a variety of 
sources to make the best possible decisions. However, in a competitive 
market environment, industrial energy data is often viewed as highly 
confidential due to commercial sensitivities. As a result, there is a need 
to develop frameworks that enable data sharing while respecting the 
value of the data to the owner but also the wider value of the data to the 
country. Data sovereignty, for example, is a research field that seeks to 
define and understand how data can be subject to laws and governance 
structures within a country.  

6) Specification of EDT software requirements 

In consultation with stakeholders, further work is needed in EDT 
software requirements elicitation and analysis to better establish what 
exactly a EDT needs to be doing. This should be followed by the design of 
specification languages to describe the various components, interactions 
and goals the system would need to implement as well as the un
certainties it would operate under. Tools and methodologies should be 
developed to enable the design and verification of EDTs and potentially, 
automatically generate proven code artefacts. A standardised specifi
cation language for EDTs will also enable the automated interoperability 
of new and existing supporting software.  

7) Engineering of AI-driven EDT 

The usage of machine learning (ML) and other artificial intelligence 
(AI) algorithms for EDTs needs to mature by developing a clear under
standing of what these methods can achieve for the process and energy 
industries. On the one hand, traditional AI optimisation techniques, such 

Fig. 8. A framework for the application of Energy Digital Twin technology (including Digital Model, Digital Shadow, and Digital Manager) to the process and 
energy industries. 
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as simulated annealing and evolutionary optimisation, can dramatically 
reduce intractable search-spaces and have been widely applied to pro
cess optimisation and synthesis. On the other hand, data-driven tech
niques, such as recurrent neural networks (RNN) and dynamic mode 
decomposition with control (DMD-c), can computationally generate 
black-box models, or hybrid models, of systems that are too hard to 
model in first principles. In addition, time-series forecasting algorithms, 
such as autoregressive integrated moving average (ARIMA), could be 
used to model externalities and other uncontrollable events. Rein
forcement learning (RL) techniques, including deep reinforcement 
learning, can be used to model advanced decision-making at a strategic 
level. In any data-driven case, however, research is required to auto
matically incorporate various AI engineering processes, such as feature 
engineering and training-validation-testing, into the system, while also 
leverage explainable AI models to enable quality assurance.  

8) EDT computational requirements including benefit-to-power-use 
analysis 

Since the main goal of EDT technology for the process industries is to 
reduce costs, energy, and emissions, a careful balance needs to be 
maintained to keep the computational requirements including the 
power, energy and emissions expended from operating EDT sufficiently 
low. For instance, contemporary deep learning algorithms are viewed as 
highly energy intensive, which is also exacerbated by the dramatically 
increasing network transmission volumes of the site and site-edge IoT 
data they would rely on. If computational requirements increases 
significantly, a trade-off may arise between the marginal benefit derived 
and the power consumed. 

6. Conclusions 

Digital twin (DT) technology and research were critically and sys
tematically reviewed with a particular lens of application to the process 
and energy industries, i.e., Energy Digital Twin (EDT). Despite the 
process and energy industries being the flagship of many digital tech
nologies, reports and publications on EDT technology applications and 
research studies were found to be relatively few compared to the 
manufacturing and building sectors. 

Multiple, sometimes contrasting definitions of DT as a term and how 
to classify them were also found in the literature, and in use generally. 
To clarify and assist future researchers and practitioners in DT generally, 
the review developed a new multi-dimensional framework to classify 
DTs and applied it to EDTs. This framework classifies a DT according to 
its behaviour (static, multiple and transient state), connection (indirect, 
one-way direct and two-way direct), likeness (1-D, 2-D, or 3-D repre
sentation), and scale (nano, micro, meso, and macro physical scale and 
time scale) attributes. Applying this framework to the literature identi
fied an EDT with 2-D likeness and able to model a process over multiple 
states as one potential research gap that could have significant benefits 
in assisting energy and emission reductions. 

In terms of what the process and energy industries have interest in, 
EDT technology they currently apply, and primarily drives the imple
mentation, applications feature most prominently in the energy related 
areas of energy generally, energy efficiency, or decarbonisation (59%); 
secondarily in the economically driven areas of profit, throughput or 
quality (36%); with the balance being in safety (5%). This leads to the 
conclusion that the optimisation of efficiency for energy usage reduc
tion, to enable a pathway for effective decarbonisation, and ensure the 
associated costs remain low are the main objectives a successful EDT 
needs to fulfil. 

EDT applications in the literature and public domain covered all 
aspects of the product or asset life cycle. However, there has been a focus 
on the design and operations phases predominately at the nano and 
micro scales. EDTs can unlock greater energy efficiency and renewable 
energy uptake through expanding the scale of application to include the 

meso and macro scales and covering the full life cycle, but this represents 
a challenging direction for future research. 
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