237 research outputs found

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells

    Kinetic theory of electromagnetic ion waves in relativistic plasmas

    Get PDF
    A kinetic theory for electromagnetic ion waves in a cold relativistic plasma is derived. The kinetic equation for the broadband electromagnetic ion waves is coupled to the slow density response via an acoustic equation driven by ponderomotive force like term linear in the electromagnetic field amplitude. The modulational instability growth rate is derived for an arbitrary spectrum of waves. The monochromatic and random phase cases are studied.Comment: 7 pages, 4 figures, to appear in Physics of Plasma

    Modulational instability of spatially broadband nonlinear optical pulses in four-state atomic systems

    Full text link
    The modulational instability of broadband optical pulses in a four-state atomic system is investigated. In particular, starting from a recently derived generalized nonlinear Schr\"odinger equation, a wave-kinetic equation is derived. A comparison between coherent and random phase wave states is made. It is found that the spatial spectral broadening can contribute to the nonlinear stability of ultra-short optical pulses. In practical terms, this could be achieved by using random phase plate techniques.Comment: 9 pages, 3 figures, to appear in Phys. Rev.
    • …
    corecore