125 research outputs found
Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium
We report experimental evidence of a remarkable spontaneous time reversal
symmetry breaking in two dimensional electron systems formed by atomically
confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si)
and germanium (Ge). Weak localization corrections to the conductivity and the
universal conductance fluctuations were both found to decrease rapidly with
decreasing doping in the Si:P and Ge:P layers, suggesting an effect
driven by Coulomb interactions. In-plane magnetotransport measurements indicate
the presence of intrinsic local spin fluctuations at low doping, providing a
microscopic mechanism for spontaneous lifting of the time reversal symmetry.
Our experiments suggest the emergence of a new many-body quantum state when two
dimensional electrons are confined to narrow half-filled impurity bands
Decoherence of encoded quantum registers
In order to eliminate disturbing effects of decoherence, encoding of quantum
information in decoherence-free subspaces has been suggested. We analyze the
benefits of this concept for a quantum register that is realized in a spin
chain in contact with a common bosonic bath. Within a dissipation-less model we
provide explicit analytical results for the average fidelity of plain and
encoded quantum registers. For the investigation of dissipative spin-boson
couplings we employ a master equation of Bloch-Redfield type.Comment: 13 pages, 9 figure
Correlation of eigenstates in the critical regime of quantum Hall systems
We extend the multifractal analysis of the statistics of critical wave
functions in quantum Hall systems by calculating numerically the correlations
of local amplitudes corresponding to eigenstates at two different energies. Our
results confirm multifractal scaling relations which are different from those
occurring in conventional critical phenomena. The critical exponent
corresponding to the typical amplitude, , gives an almost
complete characterization of the critical behavior of eigenstates, including
correlations. Our results support the interpretation of the local density of
states being an order parameter of the Anderson transition.Comment: 17 pages, 9 Postscript figure
Universal Multifractality in Quantum Hall Systems with Long-Range Disorder Potential
We investigate numerically the localization-delocalization transition in
quantum Hall systems with long-range disorder potential with respect to
multifractal properties. Wavefunctions at the transition energy are obtained
within the framework of the generalized Chalker--Coddington network model. We
determine the critical exponent characterizing the scaling behavior
of the local order parameter for systems with potential correlation length
up to magnetic lengths . Our results show that does not
depend on the ratio . With increasing , effects due to classical
percolation only cause an increase of the microscopic length scale, whereas the
critical behavior on larger scales remains unchanged. This proves that systems
with long-range disorder belong to the same universality class as those with
short-range disorder.Comment: 4 pages, 2 figures, postsript, uuencoded, gz-compresse
Wave-packet dynamics at the mobility edge in two- and three-dimensional systems
We study the time evolution of wave packets at the mobility edge of
disordered non-interacting electrons in two and three spatial dimensions. The
results of numerical calculations are found to agree with the predictions of
scaling theory. In particular, we find that the -th moment of the
probability density scales like in dimensions. The
return probability scales like , with the generalized
dimension of the participation ratio . For long times and short distances
the probability density of the wave packet shows power law scaling
. The numerical calculations were performed
on network models defined by a unitary time evolution operator providing an
efficient model for the study of the wave packet dynamics.Comment: 4 pages, RevTeX, 4 figures included, published versio
Localization in non-chiral network models for two-dimensional disordered wave mechanical systems
Scattering theoretical network models for general coherent wave mechanical
systems with quenched disorder are investigated. We focus on universality
classes for two dimensional systems with no preferred orientation: Systems of
spinless waves undergoing scattering events with broken or unbroken time
reversal symmetry and systems of spin 1/2 waves with time reversal symmetric
scattering. The phase diagram in the parameter space of scattering strengths is
determined. The model breaking time reversal symmetry contains the critical
point of quantum Hall systems but, like the model with unbroken time reversal
symmetry, only one attractive fixed point, namely that of strong localization.
Multifractal exponents and quasi-one-dimensional localization lengths are
calculated numerically and found to be related by conformal invariance.
Furthermore, they agree quantitatively with theoretical predictions. For
non-vanishing spin scattering strength the spin 1/2 systems show
localization-delocalization transitions.Comment: 4 pages, REVTeX, 4 figures (postscript
Disordered Electrons in a Strong Magnetic Field: Transfer Matrix Approaches to the Statistics of the Local Density of States
We present two novel approaches to establish the local density of states as
an order parameter field for the Anderson transition problem. We first
demonstrate for 2D quantum Hall systems the validity of conformal scaling
relations which are characteristic of order parameter fields. Second we show
the equivalence between the critical statistics of eigenvectors of the
Hamiltonian and of the transfer matrix, respectively. Based on this equivalence
we obtain the order parameter exponent for 3D quantum
Hall systems.Comment: 4 pages, 3 Postscript figures, corrected scale in Fig.
Spectral Compressibility at the Metal-Insulator Transition of the Quantum Hall Effect
The spectral properties of a disordered electronic system at the
metal-insulator transition point are investigated numerically. A recently
derived relation between the anomalous diffusion exponent and the
spectral compressibility at the mobility edge, , is
confirmed for the integer quantum Hall delocalization transition. Our
calculations are performed within the framework of an unitary network-model and
represent a new method to investigate spectral properties of disordered
systems.Comment: 5 pages, RevTeX, 3 figures, Postscript, strongly revised version to
be published in PR
Electronic structure of phosphorus and arsenic d-doped germanium
Density functional theory in the LDA+U approximation is used to calculate the electronic structure ofgermanium d doped with phosphorus and arsenic. We characterize the principal band minima of the twodimensional electron gas created by d doping and their dependence on the dopant concentration. Populated first at low concentrations is a set of band minima at the perpendicular projection of the bulk conduction band minima at L into the (kx ,ky ) plane. At higher concentrations, band minima at and become involved. Valley splittings and effective masses are computed using an explicit-atom approach, taking into account the effects of disorder in the arrangement of dopant atoms in the d plane
- …