Abstract

We study the time evolution of wave packets at the mobility edge of disordered non-interacting electrons in two and three spatial dimensions. The results of numerical calculations are found to agree with the predictions of scaling theory. In particular, we find that the kk-th moment of the probability density (t)(t) scales like tk/dt^{k/d} in dd dimensions. The return probability P(r=0,t)P(r=0,t) scales like tD2/dt^{-D_2/d}, with the generalized dimension of the participation ratio D2D_2. For long times and short distances the probability density of the wave packet shows power law scaling P(r,t)tD2/drD2dP(r,t)\propto t^{-D_2/d}r^{D_2-d}. The numerical calculations were performed on network models defined by a unitary time evolution operator providing an efficient model for the study of the wave packet dynamics.Comment: 4 pages, RevTeX, 4 figures included, published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions