220 research outputs found
Spontaneous breaking of time reversal symmetry in strongly interacting two dimensional electron layers in silicon and germanium
We report experimental evidence of a remarkable spontaneous time reversal
symmetry breaking in two dimensional electron systems formed by atomically
confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si)
and germanium (Ge). Weak localization corrections to the conductivity and the
universal conductance fluctuations were both found to decrease rapidly with
decreasing doping in the Si:P and Ge:P layers, suggesting an effect
driven by Coulomb interactions. In-plane magnetotransport measurements indicate
the presence of intrinsic local spin fluctuations at low doping, providing a
microscopic mechanism for spontaneous lifting of the time reversal symmetry.
Our experiments suggest the emergence of a new many-body quantum state when two
dimensional electrons are confined to narrow half-filled impurity bands
Kill one or kill the many: Interplay between mitophagy and apoptosis
Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of proapoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system
Spectral Properties of the Chalker-Coddington Network
We numerically investigate the spectral statistics of pseudo-energies for the
unitary network operator U of the Chalker--Coddington network. The shape of the
level spacing distribution as well the scaling of its moments is compared to
known results for quantum Hall systems. We also discuss the influence of
multifractality on the tail of the spacing distribution.Comment: JPSJ-style, 7 pages, 4 Postscript figures, to be published in J.
Phys. Soc. Jp
Localization in non-chiral network models for two-dimensional disordered wave mechanical systems
Scattering theoretical network models for general coherent wave mechanical
systems with quenched disorder are investigated. We focus on universality
classes for two dimensional systems with no preferred orientation: Systems of
spinless waves undergoing scattering events with broken or unbroken time
reversal symmetry and systems of spin 1/2 waves with time reversal symmetric
scattering. The phase diagram in the parameter space of scattering strengths is
determined. The model breaking time reversal symmetry contains the critical
point of quantum Hall systems but, like the model with unbroken time reversal
symmetry, only one attractive fixed point, namely that of strong localization.
Multifractal exponents and quasi-one-dimensional localization lengths are
calculated numerically and found to be related by conformal invariance.
Furthermore, they agree quantitatively with theoretical predictions. For
non-vanishing spin scattering strength the spin 1/2 systems show
localization-delocalization transitions.Comment: 4 pages, REVTeX, 4 figures (postscript
Wave-packet dynamics at the mobility edge in two- and three-dimensional systems
We study the time evolution of wave packets at the mobility edge of
disordered non-interacting electrons in two and three spatial dimensions. The
results of numerical calculations are found to agree with the predictions of
scaling theory. In particular, we find that the -th moment of the
probability density scales like in dimensions. The
return probability scales like , with the generalized
dimension of the participation ratio . For long times and short distances
the probability density of the wave packet shows power law scaling
. The numerical calculations were performed
on network models defined by a unitary time evolution operator providing an
efficient model for the study of the wave packet dynamics.Comment: 4 pages, RevTeX, 4 figures included, published versio
Coulomb drag between ballistic one-dimensional electron systems
The presence of pronounced electronic correlations in one-dimensional systems
strongly enhances Coulomb coupling and is expected to result in distinctive
features in the Coulomb drag between them that are absent in the drag between
two-dimensional systems. We review recent Fermi and Luttinger liquid theories
of Coulomb drag between ballistic one-dimensional electron systems, and give a
brief summary of the experimental work reported so far on one-dimensional drag.
Both the Fermi liquid (FL) and the Luttinger liquid (LL) theory predict a
maximum of the drag resistance R_D when the one-dimensional subbands of the two
quantum wires are aligned and the Fermi wave vector k_F is small, and also an
exponential decay of R_D with increasing inter-wire separation, both features
confirmed by experimental observations. A crucial difference between the two
theoretical models emerges in the temperature dependence of the drag effect.
Whereas the FL theory predicts a linear temperature dependence, the LL theory
promises a rich and varied dependence on temperature depending on the relative
magnitudes of the energy and length scales of the systems. At higher
temperatures, the drag should show a power-law dependence on temperature, R_D
\~ T^x, experimentally confirmed in a narrow temperature range, where x is
determined by the Luttinger liquid parameters. The spin degree of freedom plays
an important role in the LL theory in predicting the features of the drag
effect and is crucial for the interpretation of experimental results.Comment: 25 pages, 14 figures, to appear in Semiconductor Science and
Technolog
From quantum graphs to quantum random walks
We give a short overview over recent developments on quantum graphs and
outline the connection between general quantum graphs and so-called quantum
random walks.Comment: 14 pages, 6 figure
Spectral Properties of Three Dimensional Layered Quantum Hall Systems
We investigate the spectral statistics of a network model for a three
dimensional layered quantum Hall system numerically. The scaling of the
quantity is used to determine the critical exponent for
several interlayer coupling strengths. Furthermore, we determine the level
spacing distribution as well as the spectral compressibility at
criticality. We show that the tail of decays as with
and also numerically verify the equation
, where is the correlation dimension and the
spatial dimension.Comment: 4 pages, 5 figures submitted to J. Phys. Soc. Jp
Spectral Compressibility at the Metal-Insulator Transition of the Quantum Hall Effect
The spectral properties of a disordered electronic system at the
metal-insulator transition point are investigated numerically. A recently
derived relation between the anomalous diffusion exponent and the
spectral compressibility at the mobility edge, , is
confirmed for the integer quantum Hall delocalization transition. Our
calculations are performed within the framework of an unitary network-model and
represent a new method to investigate spectral properties of disordered
systems.Comment: 5 pages, RevTeX, 3 figures, Postscript, strongly revised version to
be published in PR
Electron scattering in multi-wall carbon-nanotubes
We analyze two scattering mechanisms that might cause intrinsic electronic
resistivity in multi-wall carbon nanotubes: scattering by dopant impurities,
and scattering by inter-tube electron-electron interaction. We find that for
typically doped multi-wall tubes backward scattering at dopants is by far the
dominating effect.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
- …