318 research outputs found

    Analytic binary alloy volume-concentration relations and the deviation from Zen`s law

    Full text link
    Alloys expand or contract as concentrations change, and the resulting relationship between atomic volume and alloy content is an important property of the solid. While a well-known approximation posits that the atomic volume varies linearly with concentration (Zen`s law), the actual variation is more complicated. Here we use an apparent size of the solute (solvent) atom and the elasticity to derive explicit analytical expressions for the atomic volume of binary solid alloys. Two approximations, continuum and terminal, are proposed. Deviations from Zen`s law are studied for 22 binary alloy systems

    Interfacial Electronic Charge Transfer and Density of States in Short Period Cu/Cr Multilayers

    Get PDF
    Nanometer period metallic multilayers are ideal structures to investigate electronic phenomena at interfaces between metal films since interfacial atoms comprise a large atomic fraction of the samples. The Cu/Cr binary pair is especially suited to study the interfaces in metals since these elements are mutually insoluble, thus eliminating mixing effects and compound formation and the lattice mismatch is very small. This allows the fabrication of high structural quality Cu/Cr multilayers that have a structure which can be approximated in calculations based on idealized atomic arrangements. The electronic structure of the Cu and the Cr layers in several samples of thin Cu/Cr multilayers were studied using x-ray absorption spectroscopy (XAS). Total electron yield was measured and used to study the white lines at the Cu L{sub 2} and L{sub 3} absorption edges. The white lines at the Cu absorption edges are strongly related to the unoccupied d-orbitals and are used to calculate the amount of charge transfer between the Cr and Cu atoms in interfaces. Analysis of the Cu white lines show a charge transfer of 0.026 electrons/interfacial Cu atom to the interfacial Cr atoms. In the Cu XAS spectra we also observe a van Hove singularity between the L{sub 2} and L{sub 3} absorption edges as expected from the structural analysis. The absorption spectra are compared to partial density of states obtained from a full-potential linear muffin-tin orbital calculation. The calculations support the presence of charge transfer and indicate that it is localized to the first two interfacial layers in both Cu and Cr

    Elastic constants and volume changes associated with two high-pressure rhombohedral phase transformations in vanadium

    Get PDF
    We present results from ab initio calculations of the mechanical properties of the rhombohedral phase (beta) of vanadium metal reported in recent experiments, and other predicted high-pressure phases (gamma and bcc), focusing on properties relevant to dynamic experiments. We find that the volume change associated with these transitions is small: no more than 0.15% (for beta - gamma). Calculations of the single crystal and polycrystal elastic moduli (stress-strain coefficients) reveal a remarkably small discontinuity in the shear modulus and other elastic properties across the phase transitions even at zero temperature where the transitions are first order.Comment: 6 pages, 3 figure

    Proper Orthogonal Decomposition Methods for the Analysis of Real-Time Data: Exploring Peak Clustering in a Secondhand Smoke Exposure Intervention

    Get PDF
    This work explores a method for classifying peaks appearing within a data-intensive time-series. We summarize a case study from a clinical trial aimed at reducing secondhand smoke exposure via the installation of air particle monitors in households. Proper orthogonal decomposition (POD) in conjunction with a k-means clustering algorithm assigns each data peak to one of two clusters. Aversive feedback from the monitors increased the proportion of short-duration, attenuated peaks from 38.8% to 96.6%. For each cluster, a distribution of parameters from a physics-based model of airborne particles is estimated. Peaks generated from these distributions are correctly identified by POD/clustering with \u3e60% accuracy
    corecore