72 research outputs found

    Golgi-retained Cx32 mutants interfere with gene addition therapy for CMT1X

    Get PDF
    Numerous GJB1 gene mutations cause the X-linked form of Charcot-Marie-Tooth disease (CMT1X). GJB1 encodes connexin32 (Cx32), which forms trans-myelin gap junctions in Schwann cells. Most GJB1 mutations result in loss-of-function mechanisms, supporting the concept of gene replacement therapy. However, interactions between delivered wild type and endogenously expressed mutant Cx32 may potentially occur in the setting of gene replacement therapy. In order to screen for possible interactions of several representative CMT1X mutants with wild type Cx32 that may interfere with the functional gap junction formation, we established an in vitro screening method co-expressing in HeLa cells wild type Cx32 and one of eight different Cx32 mutants including A39P, A39V, T55I, R75W, M93V, L143P, N175D and R183S. Some of the Golgi-retained mutants hindered gap junction plaque assembly by Cx32 on the cell membrane, while co-immunoprecipitation analysis revealed a partial interaction of wild type protein with Golgi-retained mutants. Dye transfer studies confirmed that Golgi-retained R75W, M93V and N175D but not endoplasmic reticulum-retained T55I had a negative effect on wild type Cx32 function. Finally, in vivo intraneural delivery of the gene encoding the wild type Cx32 in mice bearing either the T55I or R75W mutation on Cx32 knockout background showed that virally delivered protein was correctly localized in mice expressing the endoplasmic reticulum-retained T55I whereas it did not traffic normally in mice expressing the Golgi-retained R75W. Thus, certain Golgi-retained Cx32 mutants may interfere with exogenously delivered Cx32. Screening for mutant-wild type Cx32 interactions should be considered prior to planning gene addition therapy for CMT1X

    Gene replacement therapy in two Golgi-retained CMT1X mutants before and after the onset of demyelinating neuropathy

    Get PDF
    X-linked Charcot-Marie-Tooth disease type 1 (CMT1X) is a demyelinating neuropathy resulting from loss-of-function mutations affecting the GJB1/connexin 32 (Cx32) gene. We previously showed functional and morphological improvement in Gjb1-null mice following AAV9-mediated delivery of human Cx32 driven by the myelin protein zero (Mpz) promoter in Schwann cells. However, CMT1X mutants may interfere with virally delivered wild-type (WT) Cx32. To confirm the efficacy of this vector also in the presence of CMT1X mutants, we delivered AAV9-Mpz-GJB1 by lumbar intrathecal injection in R75W/Gjb1-null and N175D/Gjb1-null transgenic lines expressing Golgi-retained mutations, before and after the onset of the neuropathy. Widespread expression of virally delivered Cx32 was demonstrated in both genotypes. Re-establishment of WT Cx32 function resulted in improved muscle strength and increased sciatic nerve motor conduction velocities in all treated groups from both mutant lines when treated before as well as after the onset of the neuropathy. Furthermore, morphological analysis showed improvement of myelination and reduction of inflammation in lumbar motor roots and peripheral nerves. In conclusion, this study provides proof of principle for a clinically translatable gene therapy approach to treat CMT1X before and after the onset of the neuropathy, even in the presence of endogenously expressed Golgi-retained Cx32 mutants

    AAV9-mediated SH3TC2 gene replacement therapy targeted to Schwann cells for the treatment of CMT4C

    Get PDF
    Type 4C Charcot-Marie-Tooth (CMT4C) demyelinating neuropathy is caused by autosomal recessive SH3TC2 gene mutations. SH3TC2 is highly expressed in myelinating Schwann cells. CMT4C is a childhood-onset progressive disease without effective treatment. Here, we generated a gene therapy for CMT4C mediated by an adeno-associated viral 9 vector (AAV9) to deliver the human SH3TC2 gene in the Sh3tc2−/− mouse model of CMT4C. We used a minimal fragment of the myelin protein zero (Mpz) promoter (miniMpz), which was cloned and validated to achieve Schwann cell-targeted expression of SH3TC2. Following the demonstration of AAV9-miniMpz.SH3TC2myc vector efficacy to re-establish SH3TC2 expression in the peripheral nervous system, we performed an early as well as a delayed treatment trial in Sh3tc2−/− mice. We demonstrate both after early as well as following late treatment improvements in multiple motor performance tests and nerve conduction velocities. Moreover, treatment led to normalization of the organization of the nodes of Ranvier, which is typically deficient in CMT4C patients and Sh3tc2−/− mice, along with reduced ratios of demyelinated fibers, increased myelin thickness and reduced g-ratios at both time points of intervention. Taken together, our results provide a proof of concept for an effective and potentially translatable gene replacement therapy for CMT4C treatment

    The cost-effectiveness of early noninvasive ventilation for ALS patients

    Get PDF
    BACKGROUND: Optimal timing of noninvasive positive pressure ventilation (NIPPV) initiation in patients with amyotrophic lateral sclerosis (ALS) is unknown, but NIPPV appears to benefit ALS patients who are symptomatic from pulmonary insufficiency. This has prompted research proposals of earlier NIPPV initiation in the ALS disease course in an attempt to further improve ALS patient quality of life and perhaps survival. We therefore used a cost-utility analysis to determine a priori what magnitude of health-related quality of life (HRQL) improvement early NIPPV initiation would need to achieve to be cost-effective in a future clinical trial. METHODS: Using a Markov decision analytic model we calculated the benefit in health-state utility that NIPPV initiated at ALS diagnosis must achieve to be cost-effective. The primary outcome was the percent utility gained through NIPPV in relation to two common willingness-to-pay thresholds: 50,000and50,000 and 100,000 per quality-adjusted life year (QALY). RESULTS: Our results indicate that if NIPPV begun at the time of diagnosis improves ALS patient HRQL as little as 13.5%, it would be a cost-effective treatment. Tolerance of NIPPV (assuming a 20% improvement in HRQL) would only need to exceed 18% in our model for treatment to remain cost-effective using a conservative willingness-to-pay threshold of $50,000 per QALY. CONCLUSION: If early use of NIPPV in ALS patients is shown to improve HRQL in future studies, it is likely to be a cost-effective treatment. Clinical trials of NIPPV begun at the time of ALS diagnosis are therefore warranted from a cost-effectiveness standpoint

    Gene replacement therapy in a model of Charcot-Marie-Tooth 4C neuropathy

    Get PDF
    Charcot-Marie-Tooth disease type 4C is the most common recessively inherited demyelinating neuropathy that results from loss of function mutations in the SH3TC2 gene. Sh3tc2-/- mice represent a well characterized disease model developing early onset progressive peripheral neuropathy with hypo- and demyelination, slowing of nerve conduction velocities and disturbed nodal architecture. The aim of this project was to develop a gene replacement therapy for treating Charcot-Marie-Tooth disease type 4C to rescue the phenotype of the Sh3tc2-/- mouse model. We generated a lentiviral vector LV-Mpz.SH3TC2.myc to drive expression of the human SH3TC2 cDNA under the control of the Mpz promoter specifically in myelinating Schwann cells. The vector was delivered into 3-week-old Sh3tc2-/- mice by lumbar intrathecal injection and gene expression was assessed 4-8 weeks after injection. Immunofluorescence analysis showed presence of myc-tagged human SH3TC2 in sciatic nerves and lumbar roots in the perinuclear cytoplasm of a subset of Schwann cells, in a dotted pattern co-localizing with physiologically interacting protein Rab11. Quantitative PCR analysis confirmed SH3TC2 mRNA expression in different peripheral nervous system tissues. A treatment trial was initiated in 3 weeks old randomized Sh3tc2-/- littermate mice which received either the full or mock (LV-Mpz.Egfp) vector. Behavioural analysis 8 weeks after injection showed improved motor performance in rotarod and foot grip tests in treated Sh3tc2-/- mice compared to mock vector-treated animals. Moreover, motor nerve conduction velocities were increased in treated Sh3tc2-/- mice. On a structural level, morphological analysis revealed significant improvement in g-ratios, myelin thickness, and ratios of demyelinated fibres in lumbar roots and sciatic nerves of treated Sh3tc2-/- mice. Finally, treated mice also showed improved nodal molecular architecture and reduction of blood neurofilament light levels, a clinically relevant biomarker for axonal injury/degeneration. This study provides a proof of principle for viral gene replacement therapy targeted to Schwann cells to treat Charcot-Marie-Tooth disease type 4C and potentially other similar demyelinating inherited neuropathies

    Prophylactic cranial irradiation in small cell lung cancer: a systematic review of the literature with meta-analysis

    Get PDF
    PURPOSE: A systematic review of the literature was carried out to determine the role of prophylactic cranial irradiation (PCI) in small cell lung cancer (SCLC) . METHODS: To be eligible, full published trials needed to deal with SCLC and to have randomly assigned patients to receive PCI or not. Trials quality was assessed by two scores (Chalmers and ELCWP). RESULTS: Twelve randomised trials (1547 patients) were found to be eligible. Five evaluated the role of PCI in SCLC patients who had complete response (CR) after chemotherapy. Brain CT scan was done in the work-up in five studies and brain scintigraphy in six. Chalmers and ELCWP scores are well correlated (p < 0.001), with respective median scores of 32.6 and 38.8 %. This meta-analysis based on the available published data reveals a decrease of brain metastases incidence (hazard ratio (HR): 0.48; 95 % confidence interval (CI): 0.39 - 0.60) for all the studies and an improvement of survival (HR: 0.82; 95 % CI: 0.71 - 0.96) in patients in CR in favour of the PCI arm. Unfortunately, long-term neurotoxicity was not adequately described . CONCLUSIONS: PCI decreases brain metastases incidence and improves survival in CR SCLC patients but these effects were obtained in patients who had no systematic neuropsychological and brain imagery assessments. The long-term toxicity has not been prospectively evaluated. If PCI can be recommended in patients with SCLC and CR documented by a work-up including brain CT scan, data are lacking to generalise its use to any CR situations

    Rescue of Dystrophic Skeletal Muscle by PGC-1α Involves a Fast to Slow Fiber Type Shift in the mdx Mouse

    Get PDF
    Increased utrophin expression is known to reduce pathology in dystrophin-deficient skeletal muscles. Transgenic over-expression of PGC-1α has been shown to increase levels of utrophin mRNA and improve the histology of mdx muscles. Other reports have shown that PGC-1α signaling can lead to increased oxidative capacity and a fast to slow fiber type shift. Given that it has been shown that slow fibers produce and maintain more utrophin than fast skeletal muscle fibers, we hypothesized that over-expression of PGC-1α in post-natal mdx mice would increase utrophin levels via a fiber type shift, resulting in more slow, oxidative fibers that are also more resistant to contraction-induced damage. To test this hypothesis, neonatal mdx mice were injected with recombinant adeno-associated virus (AAV) driving expression of PGC-1α. PGC-1α over-expression resulted in increased utrophin and type I myosin heavy chain expression as well as elevated mitochondrial protein expression. Muscles were shown to be more resistant to contraction-induced damage and more fatigue resistant. Sirt-1 was increased while p38 activation and NRF-1 were reduced in PGC-1α over-expressing muscle when compared to control. We also evaluated if the use a pharmacological PGC-1α pathway activator, resveratrol, could drive the same physiological changes. Resveratrol administration (100 mg/kg/day) resulted in improved fatigue resistance, but did not achieve significant increases in utrophin expression. These data suggest that the PGC-1α pathway is a potential target for therapeutic intervention in dystrophic skeletal muscle

    Pathologic and Phenotypic Alterations in a Mouse Expressing a Connexin47 Missense Mutation That Causes Pelizaeus-Merzbacher–Like Disease in Humans

    Get PDF
    Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher–like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue

    The node of Ranvier in CNS pathology

    Get PDF
    • …
    corecore