14 research outputs found

    Chemical and physical properties of meadowfoam seed oil and extra virgin olive oil: focus on vibrational spectroscopy

    Get PDF
    In food industry, vegetable oils are commonly used as functional ingredients. Cold pressed oils containing fatty acids show a variety of chemical properties, which are mainly dependent on the saturation of fatty acids. In this study, we have analyzed meadowfoam seed oil (MSO), obtained from seeds of Limnanthes alba, and extra virgin olive oil (EVO). Firstly, the fatty acids composition, denoted as Cox value, was determined for the oils that are considered as the most stable. The Cox value for MSO reached 0.032, while that for EVO was 1.780. We have also determined the content of fatty acids in both of the oils using gas chromatography, while the use of mid-infrared (MIR) and near-infrared (NIR) spectroscopy allowed us to assign bands corresponding to the vibrations present in the tested functional groups. Significant differences in the shape and intensity of some bands were observed due to different content of unsaturated fatty acids. Vibrational spectroscopy methods confirmed the presence of long chain fatty acids in MSO.This work was supported through the projects M-ERA-NET/0004/2015-PAIRED and UIDB/04469/2020 (strategic fund)granted by the Portuguese Science and Technology Foun-dation, Ministry of Science and Education (FCT/MEC),through national funds and cofinanced byFEDER, under the Partnership Agreement PT2020. -e authors also acknowledge the support of the research project Nutraceuticacome supporto nutrizionale nel paziente oncologico, CUP:B83D18000140007.info:eu-repo/semantics/publishedVersio

    Nanopharmaceuticals for eye administration: sterilization, depyrogenation and clinical applications

    Get PDF
    As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed.The authors acknowledge the sponsorship received from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) through national funds, co-financed by FEDER, under the Partnership Agreement PT2020 for the project UIDB/04469/2020 (strategic fund) granted to EBS, the National Council for Scientific and Technological Development (CNPq), Brazil, for the project 425271/2016-1 granted to M.V.C., and the Coordenação Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) and Fundação de Ámparo à Pesquisa do Estado de Sergipe (FAPITEC) (88887.159533/2017-00), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq301964/2019-0 Chamada 06/2019, and Chamada CNPq nº 01/2019), granted to P.S.info:eu-repo/semantics/publishedVersio

    γ-Oryzanols of North American Wild Rice (Zizania palustris)

    Get PDF
    γ-Oryzanol, a natural mixture of ferulic acid esters of triterpene alcohols and sterols, are an important bioactive components present in rice bran oil. In light of the recent increase in the popularity of wild rice among consumers, and the possibility of a direct relationship between γ-oryzanol composition and its bioactivity, the oryzanol profile of major wild rice (Zizania palustris) grown in North America was studied and compared to regular brown rice (Oryza sativa L.). A total of twenty-three γ-oryzanol components were separated, identified and quantified by HPLC coupled to an Orbitrap MS. The distribution of individual γ-oryzanols was similar for all the wild rice but significantly different from those of the regular brown rice. Unlike in the regular brown rice, a significant amount of steryl caffeate and cinnamate were found in the wild rice samples. Generally, the amounts of γ-oryzanol in the wild rice were higher compared to the regular brown rice, 1,352 vs. 688 μg/g. The results from this study showed that wild rice had a more diverse γ-oryzanol composition and the higher amounts compared to the regular brown rice

    Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers

    No full text
    The growing perspective of running out of crude oil followed by increasing prices for all crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical applications but are usually neither biodegradable nor environmentally friendly, has resulted in searching for their substitutes—namely, bio-based polymers. Currently, both these types of polymers are used in practice worldwide. Owing to the advantages and disadvantages occurring among plastics with different origin, in this current review data on selected popular crude oil-based and bio-based polymers has been collected in order to compare their practical applications resulting from their composition, chemical structure, and related physical and chemical properties. The main goal is to compare polymers in pairs, which have the same or similar practical applications, regardless of different origin and composition. It has been proven that many crude oil-based polymers can be effectively replaced by bio-based polymers without significant loss of properties that ensure practical applications. Additionally, biopolymers have higher potential than crude oil-based polymers in many modern applications. It is concluded that the future of polymers will belong to bio-based rather than crude oil-based polymers

    Cold-Pressed Pomegranate Seed Oil: Study of Punicic Acid Properties by Coupling of GC/FID and FTIR

    No full text
    Over the last decades, we have witnessed an increasing interest in food-related products containing vegetable oils. These oils can be obtained either by extraction or by mechanical pressing of different parts of plants (e.g., seeds, fruit, and drupels). Producers of nutraceuticals have ceaselessly searched for unique and effective natural ingredients. The enormous success of argan oil has been followed by discoveries of other interesting vegetable oils (e.g., pomegranate oil) containing several bioactives. This work describes the pomegranate fruit extract and seed oil as a rich source of conjugated linolenic acid as a metabolite of punicic acid (PA), deriving from the omega-5 family (ω-5). Through the chemical characterization of PA, its nutritional and therapeutic properties are highlighted together with the physiological properties that encourage its use in human nutrition. We analyzed the composition of all fatty acids with beneficial properties occurring in pomegranate seed oil using gas chromatography (GC) with flame-ionization detection (FID) analysis combined with Fourier transform infrared spectroscopy (FTIR). Pomegranate seed oil mainly consists of 9,11,13-octadic-trienoic acid (18:3), corresponding to 73 wt % of the total fatty acids. Nine components were identified by GC in PSO, varying between 0.58 and 73.19 wt %. Using midinfrared (MIR) spectroscopy, we compared the composition of pomegranate seed oil with that of meadowfoam seed oil (MSO), which is also becoming increasingly popular in the food industry due to its high content of long chain fatty acids (C20-22), providing increased oil stability. From the results of FTIR and MIR spectroscopy, we found that punicic acid is unique in PSO (73.19 wt %) but not in MSO

    Chemical and Physical Properties of Meadowfoam Seed Oil and Extra Virgin Olive Oil: Focus on Vibrational Spectroscopy

    No full text
    In food industry, vegetable oils are commonly used as functional ingredients. Cold pressed oils containing fatty acids show a variety of chemical properties, which are mainly dependent on the saturation of fatty acids. In this study, we have analyzed meadowfoam seed oil (MSO), obtained from seeds of Limnanthes alba, and extra virgin olive oil (EVO). Firstly, the fatty acids composition, denoted as Cox value, was determined for the oils that are considered as the most stable. -e Cox value for MSO reached 0.032, while that for EVO was 1.780. We have also determined the content of fatty acids in both of the oils using gas chromatography, while the use of mid-infrared (MIR) and near-infrared (NIR) spectroscopy allowed us to assign bands corresponding to the vibrations present in the tested functional groups. Significant differences in the shape and intensity of some bands were observed due to different content of unsaturated fatty acids. Vibrational spectroscopy methods confirmed the presence of long chain fatty acids in MSO
    corecore