805 research outputs found

    Towards the grain boundary phonon scattering problem: an evidence for a low-temperature crossover

    Full text link
    The problem of phonon scattering by grain boundaries is studied within the wedge disclination dipole (WDD) model. It is shown that a specific q-dependence of the phonon mean free path for biaxial WDD results in a low-temperature crossover of the thermal conductivity, Îş\kappa. The obtained results allow to explain the experimentally observed deviation of Îş\kappa from a T3T^3 dependence below 0.1K0.1K in LiFLiF and NaClNaCl.Comment: 4 pages, 2 figures, submitted to J.Phys.:Condens.Matte

    Effects of nano-void density, size, and spatial population on thermal conductivity: a case study of GaN crystal

    Full text link
    The thermal conductivity of a crystal is sensitive to the presence of surfaces and nanoscale defects. While this opens tremendous opportunities to tailor thermal conductivity, a true "phonon engineering" of nanocrystals for a specific electronic or thermoelectric application can only be achieved when the dependence of thermal conductivity on the defect density, size, and spatial population is understood and quantified. Unfortunately, experimental studies of effects of nanoscale defects are quite challenging. While molecular dynamics simulations are effective in calculating thermal conductivity, the defect density range that can be explored with feasible computing resources is unrealistically high. As a result, previous work has not generated a fully detailed understanding of the dependence of thermal conductivity on nanoscale defects. Using GaN as an example, we have combined physically-motivated analytical model and highly-converged large scale molecular dynamics simulations to study effects of defects on thermal conductivity. An analytical expression for thermal conductivity as a function of void density, size, and population has been derived and corroborated with the model, simulations, and experiments

    The Casimir force on a surface with shallow nanoscale corrugations: Geometry and finite conductivity effects

    Full text link
    We measure the Casimir force between a gold sphere and a silicon plate with nanoscale, rectangular corrugations with depth comparable to the separation between the surfaces. In the proximity force approximation (PFA), both the top and bottom surfaces of the corrugations contribute to the force, leading to a distance dependence that is distinct from a flat surface. The measured Casimir force is found to deviate from the PFA by up to 15%, in good agreement with calculations based on scattering theory that includes both geometry effects and the optical properties of the material

    A novel, aerosol-nanocrystal floating-gate device for non-volatile memory applications

    Get PDF
    This paper describes the fabrication, and structural and electrical characterization of a new, aerosol-nanocrystal floating-gate FET, aimed at non-volatile memory (NVM) applications. This aerosol-nanocrystal NVM device features program/erase characteristics comparable to conventional stacked gate NVM devices, excellent endurance (>l0^5 P/E cycles), and long-term non-volatility in spite of a thin bottom oxide (55-60Ă…). In addition, a very simple fabrication process makes this aerosol-nanocrystal NVM device a potential candidate for low cost NVM applications

    Stepwise quantum decay of self-localized solitons

    Full text link
    The two-phonon decay of self-localized soliton in a one-dimensional monatomic anharmonic lattice caused by cubic anharmonicity is considered. It is shown that the decay takes place with emission of phonon bursts. The average rate of emission of phonons is of the order of vibrational quantum per vibrational period. Characteristic time of the relaxation is determined by the quantum anharmonicity parameter; this time may vary from a few (quantum lattices, large anharmonicity) to thousands (ordinary lattices, small anharmonicity) of vibrational periods.Comment: 6 pages, 3 figure

    Enhancement of the Thermal Conductivity in gapped Quantum Spin Chains

    Full text link
    We study mechanism of magnetic energy transport, motivated by recent measurements of the thermal conductivity in low dimensional quantum magnets. We point out a possible mechanism of enhancement of the thermal conductivity in gapped magnetic system, where the magnetic energy transport plays a crucial role. This mechanism gives an interpretation for the recent experiment of CuGeO_3, where the thermal conductivity depends on the crystal direction.Comment: 4 pages, 2 figure

    Measurement of the Casimir force between a gold sphere and silicon surface with nanoscale trench arrays

    Full text link
    We report measurements of the Casimir force between a gold sphere and a silicon surface with an array of nanoscale, rectangular corrugations using a micromechanical torsional oscillator. At distance between 150 nm and 500 nm, the measured force shows significant deviations from the pairwise additive formulism, demonstrating the strong dependence of the Casimir force on the shape of the interacting bodies. The observed deviation, however, is smaller than the calculated values for perfectly conducting surfaces, possibly due to the interplay between finite conductivity and geometry effects.Comment: 5 pages, 3 figure

    Low thermal conductivity of the layered oxide (Na,Ca)Co_2O_4: Another example of a phonon glass and an electron crystal

    Full text link
    The thermal conductivity of polycrystalline samples of (Na,Ca)Co_2O_4 is found to be unusually low, 20 mW/cmK at 280 K. On the assumption of the Wiedemann-Franz law, the lattice thermal conductivity is estimated to be 18 mW/cmK at 280 K, and it does not change appreciably with the substitution of Ca for Na. A quantitative analysis has revealed that the phonon mean free path is comparable with the lattice parameters, where the point-defect scattering plays an important role. Electronically the same samples show a metallic conduction down to 4.2 K, which strongly suggests that NaCo_2O_4 exhibits a glass-like poor thermal conduction together with a metal-like good electrical conduction. The present study further suggests that a strongly correlated system with layered structure can act as a material of a phonon glass and an electron crystal.Comment: 5 pages 3 figures, to be published in Phys. Rev.

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
    • …
    corecore