25 research outputs found

    The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Get PDF
    Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems

    Regulation of Choline Deficiency Apoptosis by Epidermal Growth Factor in CWSV-1 Rat Hepatocytes

    Get PDF
    Previous studies show that acute choline deficiency (CD) triggers apoptosis in cultured rat hepatocytes (CWSV-1 cells). We demonstrate that prolonged EGF stimulation (10 ng/mL x 48 hrs) restores cell proliferation, as assessed by BrdU labeling, and protects cells from CD-induced apoptosis, as assessed by TUNEL labeling and cleavage of poly(ADP-ribose) polymerase. However, EGF rescue was not accompanied by restoration of depleted intracellular concentrations of choline, glycerphosphocholine, phosphocholine, or phosphatidylcholine. In contrast, we show that EGF stimulation blocks apoptosis by restoring mitochondrial membrane potential (ΔΨm), as determined using the potential-sensitive dye chloromethyl-X-rosamine, and by preventing the release and nuclear localization of cytochrome c. We investigated whether EGF rescue involves EGF receptor phosphorylation and activation of the down-stream cell survival factor Akt. Compared to cells in control medium (CT, 70 μmol choline x 48hrs), cells in CD medium (5 μmol choline) were less sensitive to EGF-induced (0–300 ng/mL x 5 min) receptor tyrosine phosphorylation. Compared to cells in CT medium, cells in CD medium treated with EGF (10 ng/mL x 5 min) exhibited higher levels of phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of AktSer473. Inactivation of PI3K was sufficient to block EGF-stimulated activation of Akt, restoration of mitochondrial ΔΨm, and prevention of cytochrome c release. These studies indicate that stimulation with EGF activates a cell survival response against CD-apoptosis by restoring mitochondrial membrane potential and preventing cytochrome c release and nuclear translocation which are mediated by activation of Akt in hepatocytes

    Analysis of tumor template from multiple compartments in a blood sample provides complementary access to peripheral tumor biomarkers.

    Get PDF
    Targeted cancer therapeutics are promised to have a major impact on cancer treatment and survival. Successful application of these novel treatments requires a molecular definition of a patient\u27s disease typically achieved through the use of tissue biopsies. Alternatively, allowing longitudinal monitoring, biomarkers derived from blood, isolated either from circulating tumor cell derived DNA (ctcDNA) or circulating cell-free tumor DNA (ccfDNA) may be evaluated. In order to use blood derived templates for mutational profiling in clinical decisions, it is essential to understand the different template qualities and how they compare to biopsy derived template DNA as both blood-based templates are rare and distinct from the gold-standard. Using a next generation re-sequencing strategy, concordance of the mutational spectrum was evaluated in 32 patient-matched ctcDNA and ccfDNA templates with comparison to tissue biopsy derived DNA template. Different CTC antibody capture systems for DNA isolation from patient blood samples were also compared. Significant overlap was observed between ctcDNA, ccfDNA and tissue derived templates. Interestingly, if the results of ctcDNA and ccfDNA template sequencing were combined, productive samples showed similar detection frequency (56% vs 58%), were temporally flexible, and were complementary both to each other and the gold standard. These observations justify the use of a multiple template approach to the liquid biopsy, where germline, ctcDNA, and ccfDNA templates are employed for clinical diagnostic purposes and open a path to comprehensive blood derived biomarker access

    In Vitro and In Vivo Characterization of the Pseudomonas aeruginosa Cyclic AMP (cAMP) Phosphodiesterase CpdA, Required for cAMP Homeostasis and Virulence Factor Regulation▿ †

    Get PDF
    Cyclic AMP (cAMP) is an important second messenger signaling molecule that controls a wide variety of eukaryotic and prokaryotic responses to extracellular cues. For cAMP-dependent signaling pathways to be effective, the intracellular cAMP concentration is tightly controlled at the level of synthesis and degradation. In the opportunistic human pathogen Pseudomonas aeruginosa, cAMP is a key regulator of virulence gene expression. To better understand the role of cAMP homeostasis in this organism, we identified and characterized the enzyme CpdA, a putative cAMP phosphodiesterase. We demonstrate that CpdA possesses 3′,5′-cAMP phosphodiesterase activity in vitro and that it utilizes an iron-dependent catalytic mechanism. Deletion of cpdA results in the accumulation of intracellular cAMP and altered regulation of P. aeruginosa virulence traits. Further, we demonstrate that the cAMP-dependent transcription factor Vfr directly regulates cpdA expression in response to intracellular cAMP accumulation, thus providing a feedback mechanism for controlling cAMP levels and fine-tuning virulence factor expression

    The Adult Cystic Fibrosis Airway Microbiota Is Stable over Time and Infection Type, and Highly Resilient to Antibiotic Treatment of Exacerbations

    Get PDF
    Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations

    Lung Microbiota and Bacterial Abundance in Patients with Bronchiectasis when Clinically Stable and during Exacerbation

    Get PDF
    Rationale: Characterization of bacterial populations in infectious respiratory diseases will provide improved understanding of the relationship between the lung microbiota, disease pathogenesis, and treatment outcomes. Objectives: To comprehensively define lung microbiota composition during stable disease and exacerbation in patients with bronchiectasis. Methods: Sputum was collected from patients when clinically stable and before and after completion of antibiotic treatment of exacerbations. Bacterial abundance and community composition were analyzed using anaerobic culture and 16S rDNA pyrosequencing. Measurements and Main Results: In clinically stable patients, aerobic and anaerobic bacteria were detected in 40 of 40 (100%) and 33 of 40 (83%) sputum samples, respectively. The dominant organisms cultured were Pseudomonas aeruginosa (n = 10 patients), Haemophilus influenzae (n = 12), Prevotella (n = 18), and Veillonella (n = 13). Pyrosequencing generated more than 150,000 sequences, representing 113 distinct microbial taxa; the majority of observed community richness resulted from taxa present in low abundance with similar patterns of phyla distribution in clinically stable patients and patients at the onset of exacerbation. After treatment of exacerbation, there was no change in total (P = 0.925), aerobic (P = 0.917), or anaerobic (P = 0.683) load and only a limited shift in community composition. Agreement for detection of bacteria by culture and pyrosequencing was good for aerobic bacteria such as P. aeruginosa (κ = 0.84) but poorer for other genera including anaerobes. Lack of agreement was largely due to bacteria being detected by pyrosequencing but not by culture. Conclusions: A complex microbiota is present in the lungs of patients with bronchiectasis and remains stable through treatment of exacerbations, suggesting that changes in microbiota composition do not account for exacerbations

    Prevalent taxa are also abundant taxa.

    No full text
    <p>Plot showing the log transformed (log<sub>10</sub>) average normalized sequence counts for each taxon compared to the number of samples in which the taxon is present. Averaged values only include samples in which the taxon is present. Only taxa present in two or more samples (155 OTUs) are plotted. Raw data used to generate used for this analysis are available in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0045001#pone.0045001.s001" target="_blank">Table S7</a>. Red symbols indicate recognized dominant CF pathogens.</p

    Total viable counts by culture show significant but non-linear agreement with relative sequence abundance.

    No full text
    <p>TVC for (a) <i>P. aeruginosa</i> and (b) <i>B. cepacia</i> complex species plotted against the fraction of sequences assigned to the corresponding genera in each sputum sample. Black lines represent linear regression by least squares fitting. Values for <i>Pseudomonas</i> (r<sup>2</sup> = 0.71, p<0.001) and <i>Burkholderia</i> (r<sup>2</sup> = 0.86, p<0.001) indicate a significant correlation. Red lines are intended to illustrate a potential non-linear relationship and are based on the two-parameter Michaelis-Menten function with arbitrarily selected parameters.</p

    CF is a polymicrobial disease.

    No full text
    <p>Phylogenetic tree of the 169 OTUs identified in the CF sputum dataset. Tree construction was achieved by mapping consensus sequences from each OTU to the SILVA reference tree (see Methods). Each leaf of the tree represents a consensus OTU labeled with the most closely related genus assigned by the RDP classifier.</p

    Antibiotic regimens used to treat acute pulmonary exacerbations in this study<sup>1</sup>.

    No full text
    1<p>Table indicates antibiotic regimens used to treat each of the 26 exacerbations that occurred during the period of study. Of the 23 patients enrolled, three patients experienced two separate exacerbations. For these three patients, the first and second exacerbations were treated with different antibiotic combinations.</p
    corecore