18 research outputs found

    Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR

    Get PDF
    Ion distribution in aqueous electrolytes near the interface plays critical roles in electrochemical, biological and colloidal systems and is expected to be particularly significant inside nanoconfined regions. Electroneutrality of the total charge inside nanoconfined regions is commonly assumed a priori in solving ion distribution of aqueous electrolytes nanoconfined by uncharged hydrophobic surfaces with no direct experimental validation. Here, we use a quantitative nuclear magnetic resonance approach to investigate the properties of aqueous electrolytes nanoconfined in graphitic-like nanoporous carbon. Substantial electroneutrality breakdown in nanoconfined regions and very asymmetric responses of cations and anions to the charging of nanoconfining surfaces are observed. The electroneutrality breakdown is shown to depend strongly on the propensity of anions toward the water-carbon interface and such ion-specific response follows generally the anion ranking of the Hofmeister series. The experimental observations are further supported by numerical evaluation using the generalized Poisson-Boltzmann equationComment: 26 pages, 3 figure

    Dominant Alcohol–Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    Get PDF
    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding

    Critical Role of Water in the Binding of Volatile Anesthetics to Proteins

    Get PDF
    Numerous small molecules exhibit drug-like properties by low-affinity binding to proteins. Such binding is known to be influenced by water, the detailed picture of which, however, remains unclear. One particular example is the controversial role of water in the binding of general anesthetics to proteins as an essential step in general anesthesia. Here we demonstrate that a critical amount of hydration water is a prerequisite for anesthetic-protein binding. Using nuclear magnetic resonance, the concurrent adsorption of hydration water and bound anesthetics on model proteins are simultaneously measured. Halothane binding on proteins can only take place after protein hydration reaches a threshold hydration level of ~0.31 gram of water per gram of proteins at the relative water vapor pressure of ~0.95. Similar dependence on hydration is also observed for several other proteins. The ratio of anesthetic partial pressures at which two different anesthetics reach the same fractional load is correlated with the anesthetic potency. The binding of nonimmobilizers, which are structurally similar to known anesthetics but unable to produce anesthesia, does not occur even after the proteins are fully hydrated. Our results provide the first unambiguous experimental evidence that water is absolutely required to enable anesthetic-protein interactions, shedding new light on the general mechanism of molecular recognition and binding

    Temperature dependence of lysozyme hydration and the role of elastic energy

    Get PDF
    Water plays critical roles in protein dynamics and functions. However, the most basic property of hydration—the water sorption isotherm—remains inadequately understood. Surface adsorption is the commonly adopted picture of hydration. Since it does not account for changes in the conformational entropy of proteins, it is difficult to explain why protein dynamics and activity change upon hydration. The solution picture of hydration provides an alternative approach to describe the thermodynamics of hydration. Here, the flexibility of proteins could influence the hydration level through the change of elastic energy upon hydration. Using nuclear magnetic resonance to measure the isotherms of lysozyme in situ between 18 and 2°C, the present work provides evidence that the part of water uptake associated with the onset of protein function is significantly reduced below 8°C. Quantitative analysis shows that such reduction is directly related to the reduction of protein flexibility and enhanced cost in elastic energy upon hydration at lower temperature. The elastic property derived from the water isotherm agrees with direct mechanical measurements, providing independent support for the solution model. This result also implies that water adsorption at charged and polar groups occurring at low vapor pressure, which is known for softening the protein, is crucial for the later stage of water uptake, leading to the activation of protein dynamics. The present work sheds light on the mutual influence of protein flexibility and hydration, providing the basis for understanding the role of hydration on protein dynamics

    Critical Role of Water in the Binding of Volatile Anesthetics to Proteins

    No full text
    Numerous small molecules exhibit drug-like properties by low-affinity binding to proteins. Such binding is known to be influenced by water, the detailed picture of which, however, remains unclear. One particular example is the controversial role of water in the binding of general anesthetics to proteins as an essential step in general anesthesia. Here we demonstrate that a critical amount of hydration water is a prerequisite for anesthetic–protein binding. Using nuclear magnetic resonance, the concurrent adsorption of hydration water and bound anesthetics on model proteins are simultaneously measured. Halothane binding on proteins can only take place after protein hydration reaches a threshold hydration level of ∼0.31 g of water/g of proteins at the relative water vapor pressure of ∼0.95. Similar dependence on hydration is also observed for several other anesthetics. The ratio of anesthetic partial pressures at which two different anesthetics reach the same fractional load is correlated with the anesthetic potency. The binding of nonimmobilizers, which are structurally similar to known anesthetics but unable to produce anesthesia, does not occur even after the proteins are fully hydrated. Our results provide the first unambiguous experimental evidence that water is absolutely required to enable anesthetic–protein interactions, shedding new light on the general mechanism of molecular recognition and binding

    Dominant Alcohol–Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    No full text
    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water–protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol–protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of <i>h</i> ≈ 0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in a significant negative change in Gibbs free energy due to unmatched enthalpy–entropy compensation. These results show the crucial role of water–protein interplay in alcohol binding

    Water Adsorption in Nanoporous Carbon Characterized by in Situ NMR: Measurements of Pore Size and Pore Size Distribution

    No full text
    We report an in situ nuclear magnetic resonance (NMR) study of water adsorption in a series of activated carbon samples with pore sizes of a few nanometers down to the subnanometer scale (nanoporous carbon). Water adsorption exhibits S-shaped type V isotherms with a steep increase near a certain vapor pressure. Using a previously proposed water isotherm model, pore size and pore size distribution are derived from the in situ NMR data, and they are shown to be in good agreement with results derived from N<sub>2</sub> adsorption. The change of <sup>1</sup>H NMR spin–lattice relaxation time of adsorbed H<sub>2</sub>O with vapor pressure is consistent with the mechanism of water cluster formation at surface groups preceding the occurrence of pore filling. NMR spectra of high pressure H<sub>2</sub> gas in nanoporous carbon with preadsorbed D<sub>2</sub>O proves unambiguously that water preferentially fills the smaller nanopores. These results suggest that water adsorption can potentially be used for the characterization of pore structures of nanoporous carbon, and that in situ NMR is a convenient method for water isotherm measurement with accompanying microscopic information

    Hydrophilic and Hydrophobic Characteristics of Reservoir Rocks Quantified by Nuclear Magnetic Resonance-Detected Water Isotherms

    No full text
    Accurate determination of rock wettability is crucial for evaluating petroleum reserves and optimizing oil production. Reservoir rocks, formations that contain accumulations of oil or gas, often comprise a large collection of mineral types and a wide range of pore sizes. This heterogeneity makes it difficult to measure the wettability of reservoir rocks by conventional techniques, such as contact angle measurement. Here, we resolve this problem by applying an in situ nuclear magnetic resonance (NMR) adsorption isotherm technique. Investigations of glass bead phantoms demonstrate that NMR-detected isotherms are capable of distinguishing between hydrophilic and hydrophobic surfaces within the pore network. This NMR-based isotherm methodology is further applied to reservoir rocks. Water isotherms of the pristine rocks provide information on two important rock properties - wettability and pore-size distribution. Such information can be used, among other things, to model the wettability of the formation and to maximize waterflood recovery efficiency
    corecore