136 research outputs found

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic

    Observation of classically `forbidden' electromagnetic wave propagation and implications for neutrino detection

    Full text link
    Ongoing experimental efforts in Antarctica seek to detect ultra-high energy neutrinos by measurement of radio-frequency (RF) Askaryan radiation generated by the collision of a neutrino with an ice molecule. An array of RF antennas, deployed either in-ice or in-air, is used to infer the properties of the neutrino. To evaluate their experimental sensitivity, such experiments require a refractive index model for ray tracing radio-wave trajectories from a putative in-ice neutrino interaction point to the receiving antennas; this gives the degree of signal absorption or ray bending from source to receiver. The gradient in the density profile over the upper 200 meters of Antarctic ice, coupled with Fermat's least-time principle, implies ray "bending" and the existence of "forbidden" zones for predominantly horizontal signal propagation at shallow depths. After re-deriving the formulas describing such shadowing, we report on experimental results that, somewhat unexpectedly, demonstrate the existence of electromagnetic wave transport modes from nominally shadowed regions. The fact that this shadow-signal propagation is observed both at South Pole and the Ross Ice Shelf in Antarctica suggests that the effect may be a generic property of polar ice, with potentially important implications for experiments seeking to detect neutrinos.Comment: 33 pages, 14 figures, accepted for publication in JCA

    Radar absorption, basal reflection, thickness and polarization measurements from the Ross Ice Shelf, Antarctica

    Get PDF
    Radio-glaciological parameters from the Moore’s Bay region of the Ross Ice Shelf, Antarctica, have been measured. The thickness of the ice shelf in Moore’s Bay was measured from reflection times of radio-frequency pulses propagating vertically through the shelf and reflecting from the ocean, and is found to be 576 ± 8 m. Introducing a baseline of 543 ± 7m between radio transmitter and receiver allowed the computation of the basal reflection coefficient, R, separately from englacial loss. The depth-averaged attenuation length of the ice column, 〈L〉 is shown to depend linearly on frequency. The best fit (95% confidence level) is 〈L(ν)〉= (460±20) − (180±40)ν m (20 dB km−1), for the frequencies ν = [0.100–0.850] GHz, assuming no reflection loss. The mean electric-field reflection coefficient is (1.7 dB reflection loss) across [0.100–0.850] GHz, and is used to correct the attenuation length. Finally, the reflected power rotated into the orthogonal antenna polarization i

    Design and Performance of the ARIANNA Hexagonal Radio Array Systems

    Full text link
    We report on the development, installation and operation of the first three of seven stations deployed at the ARIANNA site's pilot Hexagonal Radio Array in Antarctica. The primary goal of the ARIANNA project is to observe ultra-high energy (>100 PeV) cosmogenic neutrino signatures using a large array of autonomous stations each dispersed 1 km apart on the surface of the Ross Ice Shelf. Sensing radio emissions of 100 MHz to 1 GHz, each station in the array contains RF antennas, amplifiers, 1.92 G-sample/s, 850 MHz bandwidth signal acquisition circuitry, pattern-matching trigger capabilities, an embedded CPU, 32 GB of solid-state data storage, and long-distance wireless and satellite communications. Power is provided by the sun and LiFePO4 storage batteries, and the stations consume an average of 7W of power. Operation on solar power has resulted in >=58% per calendar-year live-time. The station's pattern-trigger capabilities reduce the trigger rates to a few milli-Hertz with 4-sigma thresholds while retaining good stability and high efficiency for neutrino signals. The timing resolution of the station has been found to be 0.049 ps, RMS, and the angular precision of event reconstructions of signals bounced off of the sea-ice interface of the Ross Ice Shelf ranged from 0.14 to 0.17 degrees. A new fully-synchronous 2+ G-sample/s, 1.5 GHz bandwidth 4-channel signal acquisition chip with deeper memory and flexible >600 MHz, <1 mV RMS sensitivity triggering has been designed and incorporated into a single-board data acquisition and control system that uses an average of only 1.7W of power. Along with updated amplifiers, these new systems are expected to be deployed during the 2014-2015 Austral summer to complete the Hexagonal Radio Array.Comment: 17 Page, 27 Figures, 1 Tabl

    RHIC physics overview

    Full text link
    The results from data taken during the last several years at the Relativistic Heavy-Ion Collider (RHIC) will be reviewed in the paper. Several selected topics that further our understanding of constituent quark scaling, jet quenching and color screening effect of heavy quarkonia in the hot dense medium will be presented. Detector upgrades will further probe the properties of Quark Gluon Plasma. Future measurements with upgraded detectors will be presented. The discovery perspectives from future measurements will also be discussed.Comment: 9 pages, 4 figures, invited review article, published by Frontier of Physics in Chin

    Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole

    Full text link
    The sources of ultra-high energy (UHE) cosmic rays, which can have energies up to 10^20 eV, remain a mystery. UHE neutrinos may provide important clues to understanding the nature of cosmic-ray sources. ARIANNA aims to detect UHE neutrinos via radio (Askaryan) emission from particle showers when a neutrino interacts with ice, which is an efficient method for neutrinos with energies between 10^16 eV and 10^20 eV. The ARIANNA radio detectors are located in Antarctic ice just beneath the surface. Neutrino observation requires that radio pulses propagate to the antennas at the surface with minimum distortion by the ice and firn medium. Using the residual hole from the South Pole Ice Core Project, radio pulses were emitted from a transmitter located up to 1.7 km below the snow surface. By measuring these signals with an ARIANNA surface station, the angular and polarization reconstruction abilities are quantified, which are required to measure the direction of the neutrino. After deconvolving the raw signals for the detector response and attenuation from propagation through the ice, the signal pulses show no significant distortion and agree with a reference measurement of the emitter made in an anechoic chamber. Furthermore, the signal pulses reveal no significant birefringence for our tested geometry of mostly vertical ice propagation. The origin of the transmitted radio pulse was measured with an angular resolution of 0.37 degrees indicating that the neutrino direction can be determined with good precision if the polarization of the radio-pulse can be well determined. In the present study we obtained a resolution of the polarization vector of 2.7 degrees. Neither measurement show a significant offset relative to expectation
    • …
    corecore