1,691 research outputs found

    Universality Principle for Orbital Angular Momentum and Spin in Gravity with Torsion

    Get PDF
    We argue that compatibility with elementary particle physics requires gravitational theories with torsion to be unable to distinguish between orbital angular momentum and spin. An important consequence of this principle is that spinless particles must move along autoparallel trajectories, not along geodesics.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re27

    Comment on Path Integral Derivation of Schr\"odinger Equation in Spaces with Curvature and Torsion

    Full text link
    We present a derivation of the Schr\"odinger equation for a path integral of a point particle in a space with curvature and torsion which is considerably shorter and more elegant than what is commonly found in the literature.Comment: LaTeX file in sr

    Addendum to paper: Strong-Coupling Behavior of ϕ4\phi^4-Theories and Critical Exponents [Phys. Rev. D 57, 2264 (1998)]

    Full text link
    The graphical extrapolation procedure to infinite order of variational perturbation theory in a recent calculation of critical exponents of three-dimensional ϕ4\phi^4-theories at infinite couplings is improved by another way of plotting the results.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re257a/preprint.htm

    Modelling two-dimensional Crystals with Defects under Stress: Superelongation of Carbon Nanotubes at high Temperatures

    Full text link
    We calculate analytically the phase diagram of a two-dimensional square crystal and its wrapped version with defects under external homogeneous stress as a function of temperature using a simple elastic lattice model that allows for defect formation. The temperature dependence turns out to be very weak. The results are relevant for recent stress experiments on carbon nanotubes. Under increasing stress, we find a crossover regime which we identify with a cracking transition that is almost independent of temperature. Furthermore, we find an almost stress-independent melting point. In addition, we derive an enhanced ductility with relative strains before cracking between 200-400%, in agreement with carbon nanotube experiments. The specific values depend on the Poisson ratio and the angle between the external force and the crystal axes. We give arguments that the results for carbon nanotubes are not much different to the wrapped square crystal.Comment: 12 pages, 6 eps figures, section VI added discussing the modifications of our model when applied to tube

    Nonholonomic Mapping Principle for Classical Mechanics in Spaces with Curvature and Torsion. New Covariant Conservation Law for Energy-Momentum Tensor

    Full text link
    The lecture explains the geometric basis for the recently-discovered nonholonomic mapping principle which specifies certain laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein's equivalence principle. An important consequence is a new action principle for determining the equation of motion of a free spinless point particle in such spacetimes. Surprisingly, this equation contains a torsion force, although the action involves only the metric. This force changes geodesic into autoparallel trajectories, which are a direct manifestation of inertia. The geometric origin of the torsion force is a closure failure of parallelograms. The torsion force changes the covariant conservation law of the energy-momentum tensor whose new form is derived.Comment: Corrected typos. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re261/preprint.htm
    corecore