41 research outputs found

    Superb Fairy-Wren (Malurus cyaneus) Sons and Daughters Acquire Song Elements of Mothers and Social Fathers

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Birdsong is regarded as a classic example of a sexually-selected trait and has been primarily studied in systems with male song. Complex solo female song is emerging from the shadows of overlooked phenomena. In males, rearing conditions affect male song complexity, and males with complex songs are often more successful at mate attraction and territorial defense. Little is known about the ontogeny or function of complex female song. Here we examine song elements in fledgling superb fairy-wrens (Malurus cyaneus) in relation to the song elements of adult tutors. Male and female superb fairy-wrens produce solo song year-round to defend a territory. We ask if sons and daughters acquire song elements from sex-specific vocal tutors. We found that sons and daughters produced the song elements of their mothers and social fathers, and that sons and daughters had comparable song element repertoires at age 7–10 weeks. We conclude that sons and daughters increase their song element repertoire when vocally imitating elements from several vocal tutors, and that both sexes acquire elements from male and female vocal tutors in this system

    Naris deformation in Darwin’s finches: Experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi

    Get PDF
    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).The rate of evolution depends on the strength of selection, which may be particularly strong for introduced parasites and their naive hosts. Because natural selection acts on phenotypes and because parasites can alter host phenotype, one fruitful starting point to measure the impact of novel pathogens is to quantify parasite-induced changes to host phenotype. Our study system is Darwin’s finches on Floreana Island, Galápagos Archipelago, and the virulent fly larvae of Philornis downsi that were first discovered in Darwin’s finch nests in 1997. We use an experimental approach and measure host phenotype in parasitized and parasite-free chicks in Darwin’s small ground finch (Geospiza fuliginosa). Beak size did not differ between the two treatment groups, but naris size was 106% larger in parasitized chicks (∼3.3 mm) versus parasite-free chicks (∼1.6 mm). To test if P. downsi was present prior to the 1960s, we compared naris size in historical (1899–1962) and contemporary birds (2004–2014) on Floreana Island in small ground finches (G. fuliginosa) and medium tree finches (Camarhynchus pauper). Contemporary Darwin’s finches had significantly larger naris size (including extreme deformation), whereas historical naris size was both smaller and less variable. These findings provide the first longitudinal analysis for the extent of P. downsi-induced change to host naris size and show that Darwin’s finches, prior to the 1960s, were not malformed. Thus natural selection on altered host phenotype as a consequence of P. downsi parasitism appears to be contemporary and novel

    Baseline and stress-induced blood properties of male and female Darwin’s small ground finch (Geospiza fuliginosa) of the Galapagos Islands

    Get PDF
    © 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/Birds are renowned for exhibiting marked sex-specific differences in activity levels and reproductive investment during the breeding season, potentially impacting circulating blood parameters associated with stress and energetics. Males of many passerines often do not incubate, but they experience direct exposure to intruder threat and exhibit aggressive behaviour during the nesting phase in order to defend territories against competing males and predators. Nesting females often have long bouts of inactivity during incubation, but they must remain vigilant of the risks posed by predators and conspecific intruders approaching the nest. Here, we use 33 free-living male (n = 16) and female (n = 17) Darwin's small ground finches (Geospiza fuliginosa) on Floreana Island (Galapagos Archipelago) to better understand how sex-specific roles during the reproductive period impact baseline and stress-induced levels of plasma corticosterone (CORT), blood glucose and haematocrit. Specifically, we hypothesise that males are characterised by higher baseline values given their direct and relatively frequent exposure to intruder threat, but that a standardised stress event (capture and holding) overrides any sex-specific differences. In contrast with expectations, baseline levels of all blood parameters were similar between sexes (13.4 ± 1.9 ng ml−1 for CORT, 13.7 ± 0.4 mmol l−1 for glucose, 58.3 ± 0.8% for haematocrit). Interestingly, females with higher body condition had lower baseline haematocrit. All blood parameters changed with time since capture (range 1.2–41.3 min) in both sexes, whereby CORT increased linearly, haematocrit decreased linearly, and glucose increased to a peak at ∼20 min post-capture and declined to baseline levels thereafter. Our results do not support the hypothesis that sex-specific roles during the reproductive period translate to differences in blood parameters associated with stress and energetics, but we found some evidence that blood oxygen transport capacity may decline as finches increase in body condition

    Host response to cuckoo song is predicted by the future risk of brood parasitism

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Introduction: Risk assessment occurs over different temporal and spatial scales and is selected for when individuals show an adaptive response to a threat. Here, we test if birds respond to the threat of brood parasitism using the acoustical cues of brood parasites in the absence of visual stimuli. We broadcast the playback of song of three brood parasites (Chalcites cuckoo species) and a sympatric non-parasite (striated thornbill, Acanthiza lineata) in the territories of superb fairy-wrens (Malurus cyaneus) during the peak breeding period and opportunistic breeding period. The three cuckoo species differ in brood parasite prevalence and the probability of detection by the host, which we used to rank the risk of parasitism (high risk, moderate risk, low risk). Results: Host birds showed the strongest response to the threat of cuckoo parasitism in accordance with the risk of parasitism. Resident wrens had many alarm calls and close and rapid approach to the playback speaker that was broadcasting song of the high risk brood parasite (Horsfield’s bronze-cuckoo, C. basalis) across the year (peak and opportunistic breeding period), some response to the moderate risk brood parasite (shining bronze-cuckoo, C. lucidus) during the peak breeding period, and the weakest response to the low risk brood parasite (little bronzecuckoo, C. minutillus). Playback of the familiar control stimulus in wren territories evoked the least response. Conclusion: Host response to the threat of cuckoo parasitism was assessed using vocal cues of the cuckoo and was predicted by the risk of future parasitism

    Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Extreme heat events will become more frequent under anthropogenic climate change, especially in Mediterranean ecosystems. Microhabitats can considerably moderate (buffer) the effects of extreme weather events and hence facilitate the persistence of some components of the biodiversity. We investigate the microclimatic moderation provided by two important microhabitats (cavities formed by the leaves of the grass-tree Xanthorrhoea semiplana F.Muell., Xanthorrhoeaceae; and inside the leaf-litter) during the summer of 2015/16 on the Fleurieu Peninsula of South Australia. We placed microsensors inside and outside these microhabitats, as well as above the ground below the forest canopy. Grass-tree and leaf-litter microhabitats significantly buffered against high temperatures and low relative humidity, compared to ground-below-canopy sensors. There was no significant difference between grass-tree and leaf-litter temperatures: in both microhabitats, daily temperature variation was reduced, day temperatures were 1–5°C cooler, night temperatures were 0.5–3°C warmer, and maximum temperatures were up to 14.4°C lower, compared to ground-below-canopy sensors. Grass-tree and leaf-litter microhabitats moderated heat increase at an average rate of 0.24°C temperature per 1°C increase of ambient temperature in the ground-below-canopy microhabitat. The average daily variation in temperature was determined by the type (grass-tree and leaf-litter versus ground-below-canopy) of microhabitat (explaining 67%), the amount of canopy cover and the area of the vegetation fragment (together explaining almost 10% of the variation). Greater canopy cover increased the amount of microclimatic moderation provided, especially in the leaf-litter. Our study highlights the importance of microhabitats in moderating macroclimatic conditions. However, this moderating effect is currently not considered in species distribution modelling under anthropogenic climate change nor in the management of vegetation. This shortcoming will have to be addressed to obtain realistic forecasts of future species distributions and to achieve effective management of biodiversity
    corecore