1,003 research outputs found

    Modeling self-organization of communication and topology in social networks

    Full text link
    This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liarsComment: 6 pages 7 figures, Java simulation available at http://cmol.nbi.dk/models/inforew/inforew.htm

    Degree Distribution of Competition-Induced Preferential Attachment Graphs

    Full text link
    We introduce a family of one-dimensional geometric growth models, constructed iteratively by locally optimizing the tradeoffs between two competing metrics, and show that this family is equivalent to a family of preferential attachment random graph models with upper cutoffs. This is the first explanation of how preferential attachment can arise from a more basic underlying mechanism of local competition. We rigorously determine the degree distribution for the family of random graph models, showing that it obeys a power law up to a finite threshold and decays exponentially above this threshold. We also rigorously analyze a generalized version of our graph process, with two natural parameters, one corresponding to the cutoff and the other a ``fertility'' parameter. We prove that the general model has a power-law degree distribution up to a cutoff, and establish monotonicity of the power as a function of the two parameters. Limiting cases of the general model include the standard preferential attachment model without cutoff and the uniform attachment model.Comment: 24 pages, one figure. To appear in the journal: Combinatorics, Probability and Computing. Note, this is a long version, with complete proofs, of the paper "Competition-Induced Preferential Attachment" (cond-mat/0402268

    Social Ranking Techniques for the Web

    Full text link
    The proliferation of social media has the potential for changing the structure and organization of the web. In the past, scientists have looked at the web as a large connected component to understand how the topology of hyperlinks correlates with the quality of information contained in the page and they proposed techniques to rank information contained in web pages. We argue that information from web pages and network data on social relationships can be combined to create a personalized and socially connected web. In this paper, we look at the web as a composition of two networks, one consisting of information in web pages and the other of personal data shared on social media web sites. Together, they allow us to analyze how social media tunnels the flow of information from person to person and how to use the structure of the social network to rank, deliver, and organize information specifically for each individual user. We validate our social ranking concepts through a ranking experiment conducted on web pages that users shared on Google Buzz and Twitter.Comment: 7 pages, ASONAM 201

    On 1-factorizations of Bipartite Kneser Graphs

    Full text link
    It is a challenging open problem to construct an explicit 1-factorization of the bipartite Kneser graph H(v,t)H(v,t), which contains as vertices all tt-element and (v−t)(v-t)-element subsets of [v]:={1,…,v}[v]:=\{1,\ldots,v\} and an edge between any two vertices when one is a subset of the other. In this paper, we propose a new framework for designing such 1-factorizations, by which we solve a nontrivial case where t=2t=2 and vv is an odd prime power. We also revisit two classic constructions for the case v=2t+1v=2t+1 --- the \emph{lexical factorization} and \emph{modular factorization}. We provide their simplified definitions and study their inner structures. As a result, an optimal algorithm is designed for computing the lexical factorizations. (An analogous algorithm for the modular factorization is trivial.)Comment: We design the first explicit 1-factorization of H(2,q), where q is a odd prime powe

    Prophet Inequalities for IID Random Variables from an Unknown Distribution

    Get PDF
    A central object in optimal stopping theory is the single-choice prophet inequality for independent, identically distributed random variables: given a sequence of random variables X1, . . . , Xn drawn independently from a distribution F , the goal is to choose a stopping time τ so as to maximize α such that for all distributions F we have E[Xτ ] ≥ α · E[maxt Xt ]. What makes this problem challenging is that the decision whether τ = t may only depend on the values of the random variables X1, . . . , Xt and on the distribution F . For a long time the best known bound for the problem had been α ≥ 1 − 1/e ≈ 0.632, but quite recently a tight bound of α ≈ 0.745 was obtained. The case where F is unknown, such that the decision whether τ = t may depend only on the values of the random variables X1, . . . , Xt , is equally well motivated but has received much less attention. A straightforward guarantee for this case of α ≥ 1/e ≈ 0.368 can be derived from the solution to the secretary problem, where an arbitrary set of values arrive in random order and the goal is to maximize the probability of selecting the largest value. We show that this bound is in fact tight. We then investigate the case where the stopping time may additionally depend on a limited number of samples from F , and show that even with o(n) samples α ≤ 1/e. On the other hand, n samples allow for a significant improvement, while O(n2) samples are equivalent to knowledge of the distribution: specifically, with n samples α ≥ 1 − 1/e ≈ 0.632 and α ≤ ln(2) ≈ 0.693, and with O(n2) samples α ≥ 0.745 − ε for any ε > 0

    Euclidean Greedy Drawings of Trees

    Full text link
    Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes s, t in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of greedy embeddings in the Euclidean plane R^2 is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in R^2. This answers a question by Angelini et al. (Graph Drawing 2009) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.Comment: Expanded version of a paper to appear in the 21st European Symposium on Algorithms (ESA 2013). 24 pages, 20 figure

    Constrained Non-Monotone Submodular Maximization: Offline and Secretary Algorithms

    Full text link
    Constrained submodular maximization problems have long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of non-monotone submodular maximization is less understood: the first approximation algorithms even for the unconstrainted setting were given by Feige et al. (FOCS '07). More recently, Lee et al. (STOC '09, APPROX '09) show how to approximately maximize non-monotone submodular functions when the constraints are given by the intersection of p matroid constraints; their algorithm is based on local-search procedures that consider p-swaps, and hence the running time may be n^Omega(p), implying their algorithm is polynomial-time only for constantly many matroids. In this paper, we give algorithms that work for p-independence systems (which generalize constraints given by the intersection of p matroids), where the running time is poly(n,p). Our algorithm essentially reduces the non-monotone maximization problem to multiple runs of the greedy algorithm previously used in the monotone case. Our idea of using existing algorithms for monotone functions to solve the non-monotone case also works for maximizing a submodular function with respect to a knapsack constraint: we get a simple greedy-based constant-factor approximation for this problem. With these simpler algorithms, we are able to adapt our approach to constrained non-monotone submodular maximization to the (online) secretary setting, where elements arrive one at a time in random order, and the algorithm must make irrevocable decisions about whether or not to select each element as it arrives. We give constant approximations in this secretary setting when the algorithm is constrained subject to a uniform matroid or a partition matroid, and give an O(log k) approximation when it is constrained by a general matroid of rank k.Comment: In the Proceedings of WINE 201

    Small world yields the most effective information spreading

    Get PDF
    Spreading dynamics of information and diseases are usually analyzed by using a unified framework and analogous models. In this paper, we propose a model to emphasize the essential difference between information spreading and epidemic spreading, where the memory effects, the social reinforcement and the non-redundancy of contacts are taken into account. Under certain conditions, the information spreads faster and broader in regular networks than in random networks, which to some extent supports the recent experimental observation of spreading in online society [D. Centola, Science {\bf 329}, 1194 (2010)]. At the same time, simulation result indicates that the random networks tend to be favorable for effective spreading when the network size increases. This challenges the validity of the above-mentioned experiment for large-scale systems. More significantly, we show that the spreading effectiveness can be sharply enhanced by introducing a little randomness into the regular structure, namely the small-world networks yield the most effective information spreading. Our work provides insights to the understanding of the role of local clustering in information spreading.Comment: 6 pages, 7 figures, accepted by New J. Phy

    The Influence of Early Respondents: Information Cascade Effects in Online Event Scheduling

    Full text link
    Sequential group decision-making processes, such as online event scheduling, can be subject to social influence if the decisions involve individuals’ subjective preferences and values. Indeed, prior work has shown that scheduling polls that allow respondents to see others’ answers are more likely to succeed than polls that hide other responses, suggesting the impact of social influence and coordination. In this paper, we investigate whether this difference is due to information cascade effects in which later respondents adopt the decisions of earlier respondents. Analyzing more than 1.3 million Doodle polls, we found evidence that cascading effects take place during event scheduling, and in particular, that early respondents have a larger influence on the outcome of a poll than people who come late. Drawing on simulations of an event scheduling model, we compare possible interventions to mitigate this bias and show that we can optimize the success of polls by hiding the responses of a small percentage of low availability respondents.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134703/1/Romero et al 2017 (WSDM).pd
    • …
    corecore