1,451 research outputs found

    Spectral centrality measures in complex networks

    Full text link
    Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.Comment: 11 pages, 10 figures, 5 tables. Final version published in Physical Review

    Modeling self-organization of communication and topology in social networks

    Full text link
    This paper introduces a model of self-organization between communication and topology in social networks, with a feedback between different communication habits and the topology. To study this feedback, we let agents communicate to build a perception of a network and use this information to create strategic links. We observe a narrow distribution of links when the communication is low and a system with a broad distribution of links when the communication is high. We also analyze the outcome of chatting, cheating, and lying, as strategies to get better access to information in the network. Chatting, although only adopted by a few agents, gives a global gain in the system. Contrary, a global loss is inevitable in a system with too many liarsComment: 6 pages 7 figures, Java simulation available at http://cmol.nbi.dk/models/inforew/inforew.htm

    Sequential item pricing for unlimited supply

    Get PDF
    We investigate the extent to which price updates can increase the revenue of a seller with little prior information on demand. We study prior-free revenue maximization for a seller with unlimited supply of n item types facing m myopic buyers present for k < log n days. For the static (k = 1) case, Balcan et al. [2] show that one random item price (the same on each item) yields revenue within a \Theta(log m + log n) factor of optimum and this factor is tight. We define the hereditary maximizers property of buyer valuations (satisfied by any multi-unit or gross substitutes valuation) that is sufficient for a significant improvement of the approximation factor in the dynamic (k > 1) setting. Our main result is a non-increasing, randomized, schedule of k equal item prices with expected revenue within a O((log m + log n) / k) factor of optimum for private valuations with hereditary maximizers. This factor is almost tight: we show that any pricing scheme over k days has a revenue approximation factor of at least (log m + log n) / (3k). We obtain analogous matching lower and upper bounds of \Theta((log n) / k) if all valuations have the same maximum. We expect our upper bound technique to be of broader interest; for example, it can significantly improve the result of Akhlaghpour et al. [1]. We also initiate the study of revenue maximization given allocative externalities (i.e. influences) between buyers with combinatorial valuations. We provide a rather general model of positive influence of others' ownership of items on a buyer's valuation. For affine, submodular externalities and valuations with hereditary maximizers we present an influence-and-exploit (Hartline et al. [13]) marketing strategy based on our algorithm for private valuations. This strategy preserves our approximation factor, despite an affine increase (due to externalities) in the optimum revenue.Comment: 18 pages, 1 figur

    Scale-free network growth by ranking

    Full text link
    Network growth is currently explained through mechanisms that rely on node prestige measures, such as degree or fitness. In many real networks those who create and connect nodes do not know the prestige values of existing nodes, but only their ranking by prestige. We propose a criterion of network growth that explicitly relies on the ranking of the nodes according to any prestige measure, be it topological or not. The resulting network has a scale-free degree distribution when the probability to link a target node is any power law function of its rank, even when one has only partial information of node ranks. Our criterion may explain the frequency and robustness of scale-free degree distributions in real networks, as illustrated by the special case of the Web graph.Comment: 4 pages, 2 figures. We extended the model to account for ranking by arbitrarily distributed fitness. Final version to appear on Physical Review Letter

    Social Ranking Techniques for the Web

    Full text link
    The proliferation of social media has the potential for changing the structure and organization of the web. In the past, scientists have looked at the web as a large connected component to understand how the topology of hyperlinks correlates with the quality of information contained in the page and they proposed techniques to rank information contained in web pages. We argue that information from web pages and network data on social relationships can be combined to create a personalized and socially connected web. In this paper, we look at the web as a composition of two networks, one consisting of information in web pages and the other of personal data shared on social media web sites. Together, they allow us to analyze how social media tunnels the flow of information from person to person and how to use the structure of the social network to rank, deliver, and organize information specifically for each individual user. We validate our social ranking concepts through a ranking experiment conducted on web pages that users shared on Google Buzz and Twitter.Comment: 7 pages, ASONAM 201

    Paradoxes in Fair Computer-Aided Decision Making

    Full text link
    Computer-aided decision making--where a human decision-maker is aided by a computational classifier in making a decision--is becoming increasingly prevalent. For instance, judges in at least nine states make use of algorithmic tools meant to determine "recidivism risk scores" for criminal defendants in sentencing, parole, or bail decisions. A subject of much recent debate is whether such algorithmic tools are "fair" in the sense that they do not discriminate against certain groups (e.g., races) of people. Our main result shows that for "non-trivial" computer-aided decision making, either the classifier must be discriminatory, or a rational decision-maker using the output of the classifier is forced to be discriminatory. We further provide a complete characterization of situations where fair computer-aided decision making is possible

    Activity ageing in growing networks

    Get PDF
    We present a model for growing information networks where the ageing of a node depends on the time at which it entered the network and on the last time it was cited. The model is shown to undergo a transition from a small-world to large-world network. The degree distribution may exhibit very different shapes depending on the model parameters, e.g. delta-peaked, exponential or power-law tailed distributions.Comment: 9 pages, 2 figure

    Modeling Dynamics of Information Networks

    Full text link
    We propose an information-based model for network dynamics in which imperfect information leads to networks where the different vertices have widely different number of edges to other vertices, and where the topology has hierarchical features. The possibility to observe scale free networks is linked to a minimally connected system where hubs remain dynamic.Comment: 4 pages, 5 figures; changed content and new fig

    Finding local community structure in networks

    Full text link
    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(d*k^2) for general graphs when dd is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time-consuming, the running time is linear, O(k). We show that on computer-generated graphs this technique compares favorably to algorithms that require global knowledge. We also use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer and show the existence of mesoscopic structure.Comment: 7 pages, 6 figure

    Greedy Connectivity of Geographically Embedded Graphs

    Full text link
    We introduce a measure of {\em greedy connectivity} for geographical networks (graphs embedded in space) and where the search for connecting paths relies only on local information, such as a node's location and that of its neighbors. Constraints of this type are common in everyday life applications. Greedy connectivity accounts also for imperfect transmission across established links and is larger the higher the proportion of nodes that can be reached from other nodes with a high probability. Greedy connectivity can be used as a criterion for optimal network design
    • …
    corecore