48 research outputs found
Brandstof kweken biedt zicht op schone toekomst
De zon is onze perfecte duurzame energiebron die we kunnen aftappen via fotosynthese. Planten doen dit al van nature, maar lang niet efficiënt genoeg. Daarom werkt het bedrijf BioSolar Cells aan de ontwikkeling van Solar Fuels: brandstoffen die rechtstreeks, zonder eerst biomassa te maken, worden gemaakt uit zonlicht, water en CO2. Dit kan met hoge efficiëntie en ondervangt bovendien een aantal knellende problemen met het gebruik van biomassa
FISH mapping and molecular organization of the major repetitive sequences of tomato
This paper presents a bird's-eye view of the major repeats and chromatin types of tomato. Using fluorescence in-situ hybridization (FISH) with Cot-1, Cot-10 and Cot-100 DNA as probes we mapped repetitive sequences of different complexity on pachytene complements. Cot-100 was found to cover all heterochromatin regions, and could be used to identify repeat-rich clones in BAC filter hybridization. Next we established the chromosomal locations of the tandem and dispersed repeats with respect to euchromatin, nucleolar organizer regions (NORs), heterochromatin, and centromeres. The tomato genomic repeats TGRII and TGRIII appeared to be major components of the pericentromeres, whereas the newly discovered TGRIV repeat was found mainly in the structural centromeres. The highly methylated NOR of chromosome 2 is rich in [GACA](4), a microsatellite that also forms part of the pericentromeres, together with [GA](8), [GATA](4) and Ty1-copia. Based on the morphology of pachytene chromosomes and the distribution of repeats studied so far, we now propose six different chromatin classes for tomato: (1) euchromatin, (2) chromomeres, (3) distal heterochromatin and interstitial heterochromatic knobs, (4) pericentromere heterochromatin, (5) functional centromere heterochromatin and (6) nucleolar organizer regio
Brandstof kweken biedt zicht op schone toekomst
De zon is onze perfecte duurzame energiebron die we kunnen aftappen via fotosynthese. Planten doen dit al van nature, maar lang niet efficiënt genoeg. Daarom werkt het bedrijf BioSolar Cells aan de ontwikkeling van Solar Fuels: brandstoffen die rechtstreeks, zonder eerst biomassa te maken, worden gemaakt uit zonlicht, water en CO2. Dit kan met hoge efficiëntie en ondervangt bovendien een aantal knellende problemen met het gebruik van biomassa
Biobrandstof met het gemak van benzine
Onderzoekers in Wageningen werken aan brandstoffen voor voertuigen die hernieuwbaar zijn en tegelijk hetzelfde gemak kennen als benzine en diesel. In het BioSolar Cellsconsortium werken ze met technieken die geïnspireerd zijn op fotosynthese in planten. Van water wordt met zonlicht waterstof gemaakt. Met koolzuurgas en enzymen wordt dit gas omgezet in een vloeibare brandstof. Dat is makkelijker te transporteren dan waterstofgas. In plaats van benzine kan de automobilist dan straks klimaatneutrale zonnebrandstof tanken
CropBooster - Research plan for a future European crop yield programme
The CropBooster Program proposes an exciting strategic Research and Innovation Roadmap that builds on current advances in plant science and crop research. This will combine research excellence distributed within the European Research Area with professional expertise from plant breeders, growers and the Bioeconomy value chains. The Program will deliver breakthrough translational research and deliver blueprints for future-proofed crops designed to address emerging environmental threats to crop production and improve food security and the sustainable supply of plant-based materials.
The CropBooster Program science-based “blueprints” for improved crop plants will address key critical challenges including:
More efficient use of resources or inputs in agriculture (in the case of CropBooster the primary resources are water, and nutrients (e.g. Nitrogen and Phosphorus)
Increasing crop yields to provide sufficient food for the growing global population. This population is expected to have an increased per capita food demand, estimates suggest crop production may need to increase by up to 110%
Transitioning to a more sustainable bioeconomy to meet increasing demands for biobased materials and products. New feedstock crops and cell factories will be better designed to meet the needs of processors and end users.
The adaptation of crops to be resilient to climate change: this will affect different regions in Europe differently including changes in average climate and increasing weather extremes.
Increasing the nutritional value and other quality parameters of future crops.
The mitigation of greenhouse gases. Carbon dioxide, fixed by photosynthesis, can be sequestered within plants or below ground as soil organic carbon.
The need to reserve space for natural ecosystems and therefore to increase yields and sustainability without any expansion of the area of croplands.This document has benefited from contributions from multiple experts – the authoring team and main contributors are listed in Section 12.1. This document would not have been possible without their generous support and contributions
Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana
The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration. The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome. The sequence of chromosomes 2 and 4 have been reported previously and that of chromosomes 1 and 3, together with an analysis of the complete genome sequence, are reported in this issue. Analysis of the sequence of chromosome 5 yields further insights into centromere structure and the sequence determinants of heterochromatin condensation. The 5,874 genes encoded on chromosome 5 reveal several new functions in plants, and the patterns of gene organization provide insights into the mechanisms and extent of genome evolution in plants
Kunstmatig blad levert voedsel voor chemische industrie
In 2030 moet eenderde van de chemische industrie ‘biobased’ zijn. Dat wil zeggen gebruikmaken van groene grondstoffen. Het probleem is alleen dat de natuur niet zo erg efficiënt is bij het omzetten van zonlicht in energie en chemicaliën. „We moeten ons niet baseren op de natuur, maar er ons door laten inspireren om het beter te doen”, vinden René Klein Lankhorst en Huib de Vriend. In het BioSolar Cells-onderzoeksprogramma ontwikkelt Nederland kunstmatige bladeren waarin fotosynthese wordt nagebootst voor de productie van grondstoffen uit zonlicht, water en CO2