1,358,875 research outputs found

    Klein Tunnelling and the Klein Paradox

    Full text link
    The Klein paradox is reassessed by considering the properties of a finite square well or barrier in the Dirac equation. It is shown that spontaneous positron emission occurs for a well if the potential is strong enough. The vacuum charge and lifetime of the well are estimated. If the well is wide enough, a seemingly constant current is emitted. These phenomena are transient whereas the tunnelling first calculated by Klein is time-independent. Klein tunnelling is a property of relativistic wave equations, not necessarily connected to particle emission. The Coulomb potential is investigated in this context: it is shown that a heavy nucleus of sufficiently large ZZ will bind positrons. Correspondingly, it is expected that as ZZ increases the Coulomb barrier will become increasingly transparent to positrons. This is an example of Klein tunnelling.Comment: 17 page

    Klein-Gordon Oscillator in Kaluza-Klein Theory

    Get PDF
    In this contribution we study the Klein-Gordon oscillator on the curved background within the Kaluza-Klein theory. The problem of interaction between particles coupled harmonically with a topological defects in Kaluza-Klein theory is studied. We consider a series of topological defects, that treat the Klein-Gordon oscillator coupled to this background and find the energy levels and corresponding eigenfunctions in these cases. We show that the energy levels depend on the global parameters characterizing these spacetimes. We also investigate a quantum particle described by the Klein-Gordon oscillator interacting with a cosmic dislocation in Som-Raychaudhuri spacetime in the presence of homogeneous magnetic field in a Kaluza-Klein theory. In this case, the spectrum of energy is determined, and we observe that these energy levels are the sum of the term related with Aharonov-Bohm flux and of the parameter associated to the rotation of the spacetime.Comment: 15 pages, no figur

    The double of the doubles of Klein surfaces

    Full text link
    A Klein surface is a surface with a dianalytic structure. A double of a Klein surface XX is a Klein surface YY such that there is a degree two morphism (of Klein surfaces) Y→XY\rightarrow X. There are many doubles of a given Klein surface and among them the so-called natural doubles which are: the complex double, the Schottky double and the orienting double. We prove that if XX is a non-orientable Klein surface with non-empty boundary, the three natural doubles, although distinct Klein surfaces, share a common double: "the double of doubles" denoted by DXDX. We describe how to use the double of doubles in the study of both moduli spaces and automorphisms of Klein surfaces. Furthermore, we show that the morphism from DXDX to XX is not given by the action of an isometry group on classical surfaces.Comment: 14 pages; more details in the proof of theorem

    Universal Boundary Entropies in Conformal Field Theory: A Quantum Monte Carlo Study

    Full text link
    Recently, entropy corrections on nonorientable manifolds such as the Klein bottle are proposed as a universal characterization of critical systems with an emergent conformal field theory (CFT). We show that entropy correction on the Klein bottle can be interpreted as a boundary effect via transforming the Klein bottle into an orientable manifold with nonlocal boundary interactions. The interpretation reveals the conceptual connection of the Klein bottle entropy with the celebrated Affleck-Ludwig entropy in boundary CFT. We propose a generic scheme to extract these universal boundary entropies from quantum Monte Carlo calculation of partition function ratios in lattice models. Our numerical results on the Affleck-Ludwig entropy and Klein bottle entropy for the qq-state quantum Potts chains with q=2,3q=2,3 show excellent agreement with the CFT predictions. For the quantum Potts chain with q=4q=4, the Klein bottle entropy slightly deviates from the CFT prediction, which is possibly due to marginally irrelevant terms in the low-energy effective theory.Comment: 10 pages, 4 figures. Published versio

    Excitation of Kaluza-Klein gravitational mode

    Get PDF
    We investigate excitation of Kaluza-Klein modes due to the parametric resonance caused by oscillation of radius of compactification. We consider a gravitational perturbation around a D-dimensional spacetime, which we compactify on a (D-4)-sphere to obtain a 4-dimensional theory. The perturbation includes the so-called Kaluza-Klein modes, which are massive in 4-dimension, as well as zero modes, which is massless in 4-dimension. These modes appear as scalar, vector and second-rank symmetric tensor fields in the 4-dimensional theory. Since Kaluza-Klein modes are troublesome in cosmology, quanta of these Kaluza-Klein modes should not be excited abundantly. However, if radius of compactification oscillates, then masses of Kaluza-Klein modes also oscillate and, thus, parametric resonance of Kaluza-Klein modes may occur to excite their quanta. In this paper we consider part of Kaluza-Klein modes which correspond to massive scalar fields in 4-dimension and investigate whether quanta of these modes are excited or not in the so called narrow resonance regime of the parametric resonance. We conclude that at least in the narrow resonance regime quanta of these modes are not excited so catastrophically.Comment: 15 pages LaTeX, submitted to Phys.Rev.
    • …
    corecore