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Abstract In this contribution we study the Klein–Gordon
oscillator on the curved background within the Kaluza–Klein
theory. The problem of the interaction between particles cou-
pled harmonically with topological defects in Kaluza–Klein
theory is studied. We consider a series of topological defects,
then we treat the Klein–Gordon oscillator coupled to this
background, and we find the energy levels and correspond-
ing eigenfunctions in these cases. We show that the energy
levels depend on the global parameters characterizing these
spacetimes. We also investigate a quantum particle described
by the Klein–Gordon oscillator interacting with a cosmic dis-
location in Som–Raychaudhuri spacetime in the presence of
homogeneous magnetic field in a Kaluza–Klein theory. In
this case, the energy spectrum is determined, and we observe
that these energy levels represent themselves as the sum of the
terms related with Aharonov–Bohm flux and of the parameter
associated to the rotation of the spacetime.

1 Introduction

Harmonic interactions play an important role in physics
mainly when we consider the motion of particles in the
presence of molecular potentials and electromagnetic fields.
Particularly, the harmonic oscillator appears as a prototype
model in many areas of physics such as solid states physics,
quantum statistical mechanics, and quantum field theory,
and indeed it serves as an important physical example to
study the concepts and mathematical tools in standard quan-
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tum physics. At the same time, within relativistic quantum
mechanics, the effects introduced by the peculiar motion of
the particles in physical system at the high energy can be
considered. Together, quantum and relativistic effects have
received a great deal of attention within the quantum treat-
ment of dynamics of particles occurring in backgrounds pro-
duced by topological defects [1–4]. A well-known version for
relativistic harmonic oscillator was proposed in Ref. [5] for a
spin-1/2 particle. This oscillator was named a Dirac oscilla-
tor. In the non-relativistic limit this model has a behavior of
harmonic oscillator with a very strong spin–orbit coupling
term. This Dirac oscillator is characterized by a new cou-
pling of the momentum of the particle that is linear in the
coordinates. Most recently, the relativistic harmonic oscilla-
tor was studied in a commutative and noncommutative field
theory [5,6] among other configurations, including magnetic
fields [7–9]. The Dirac oscillator was investigated for a spin-
1/2 particle in the presence of topological defects in Refs.
[10–18]. However, these studies were carried out for the
quantum dynamics of spin-1/2 particles, leaving a gap in
the treatment of harmonic interaction for relativistic scalar
particles.

Several studies have demonstrated an interest in relativis-
tic models [19–22] where the interaction potential is similar
to the one of the harmonic oscillator, such as the vibrational
spectrum of diatomic molecules [23], the binding of heavy
quarks [24,25], and the oscillations of atoms in crystal lat-
tices, by mapping them as a position-dependent mass sys-
tem [26–29]. The importance of these potentials arises from
the presence of a strong potential field. Recently, Bahar and
Yasuk [19], intending to study the quark–antiquark interac-
tion [30,31], have investigated the problem of a relativistic
spin-0 particle possessing a position-dependent mass, where
the mass term acquires a contribution given by an interac-
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tion potential that consists of linear and harmonic confining
potentials plus a Coulomb potential term.

The Klein–Gordon oscillator [32,33] was inspired by ear-
lier papers on the Dirac oscillator [5] applied to half-integer
spin particles. Recently Rao et al. [34] studied the spectral
distribution of energy levels and eigenfunctions sets describ-
ing the state of a particle by solving the Klein–Gordon equa-
tion in one-dimensional version of Minkowski spacetimes.
In a recent paper, Boumali and Messai [35] have investi-
gated a Klein–Gordon oscillator in the background of cos-
mic strings in the presence of a uniform magnetic field. The
Klein–Gordon oscillator was investigated in the presence of
a Coulomb potential considering two ways of coupling of
Coulomb potential within the Klein–Gordon equation: in the
first paper [36] the Coulomb potential is incorporated in the
equation by a modification mass term, in the second model
[37] this potential is introduced in the Klein–Gordon equa-
tion via the minimal coupling, in the latter case the linear
potential also was included in the equation. Our intention
now is to extend these studies not only to other dimensions
but mostly to consider this dynamics in general background
spacetimes produced by topological defects using Kaluza–
Klein theory [2,38–42]. These sources of gravitational fields
play an important role in condensed matter physics systems
[43–46], mainly due to the possibility to compensate for the
elastic contribution introduced by the defect by fine tuning
of the external magnetic field. Besides topological defects
like cosmic strings [47] and domain walls [48], a global
monopole [49] provides a tiny relation between the effects
in cosmology and gravitation and those in condensed mat-
ter physics systems, where topological defects analogous to
cosmic strings appear in phase transitions in liquid crystals
[50,51]. Recently, the Klein–Gordon oscillator in the Som–
Raychaudhuri spacetime in the presence of uniform magnetic
fields was investigated by Wang et al. [52].

This contribution is organized as follows: in Sect. 2, using
the Kaluza–Klein theory, we study the energy levels of parti-
cles interacting with a gravitational field produced by a cos-
mic string in the presence of a Klein–Gordon oscillator. In
Sect. 3, we study the quantum dynamics in the presence of
the magnetic cosmic string, calculating the energy spectrum
as well as the corresponding eigenfunctions. In Sect. 4, we
consider the case in which the background has a torsional
source of a gravitational field added to the curvature source
introduced by the conical defect. To consider the contribution
introduced by a magnetic field to this dynamics, in Sect. 5,
we consider a homogeneous magnetic field filling the space
accessible to the Klein–Gordon particle. Additionally to the
magnetic field we consider rotational spacetimes, whose rota-
tion is introduced via a geometric description of Kaluza–
Klein theory. In Sect. 6, some discussion of our results will
be presented. Throughout the article we will consider the
system of units where h̄ = c = G = 1.

2 Klein–Gordon oscillator in cosmic string background

The purpose of this section is to study the Klein–Gordon
oscillator in the background of the cosmic string with use of
Kaluza–Klein theory [2,38–40]. A first study of a topological
defect in Kaluza–Klein theory was carried out in Ref. [40],
where the authors have investigated a series of cylindrically
symmetric solutions of Einstein and Einstein–Gauss–Bonnet
equations. In [40], one has found various solutions of a cos-
mic string form in five dimension, such as: the neutral cosmic
string, cosmic dislocation, and superconducting cosmic and
multi-cosmic string spacetimes. The metric corresponding to
this geometry can be written

ds2 = −dt2 + dρ2 + α2ρ2dφ2 + dz2 + dx2 (1)

where t is the time coordinate, x is the coordinate associated
with the fifth additional dimension, and (ρ, φ, z) are cylin-
drical coordinates. These coordinates assume, respectively,
the following ranges: −∞ < (t, z) < ∞, 0 ≤ ρ < ∞,
0 ≤ φ ≤ 2π, 0 < x < 2πa, where a is the radius of the
compact dimension x . The parameter α, characterizing the
cosmic string, is given in terms of the mass density of the
string μ, by α = 1 − 4μ [47,53]. Cosmology and gravita-
tion imposes limits to the range of the α parameter, which
is restricted to α < 1 [47]. Moreover, in condensed matter
physics systems, this restriction is free and the opposite case
α > 1, the well-known negative disclination case [54], can
occur in several systems as those described by [51].

To couple the Klein–Gordon oscillator [32,33] to this
background we use the generalization of the Mirza and
Mohadesi prescription [6], in which we carry out the fol-
lowing change in the momentum operator:

pμ → (pμ + iMwXμ) (2)

where we have defined in polar coordinates Xμ = (0, ρ, 0,

0, 0), ρ is the transverse distance from the particle to the
defect. In this way, the general Klein–Gordon equation
becomes

{
1√−g

(∂μ + MwXμ)
√−ggμν(∂ν − MwXν) − M2

}
� = 0

(3)

with g being the determinant of the metric tensor and gμν the
inverse metric tensor; ∂μ,ν are partial derivatives with respect
to the coordinates. The matrix gμν is of the form

gμν = diag(−1, 1, 1/α2ρ2, 1, 1), (4)

and in this way Eq. (3) becomes

{
1

ρ
∂ρ(ρ∂ρ) + ∂2

φ

α2ρ2 − M2w2ρ2 + γ

}
� = 0 (5)
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with γ = −∂2
t + ∂2

z + ∂2
x − 2Mw − M2. x is the fifth spa-

tial coordinate in Kaluza–Klein theory. Assuming a temporal
independence of our background and translational symmetry
along the axes of x and z, we can choose the following ansatz:

� = e−i(Et−kz−lφ−λx)R(ρ). (6)

In this way, Eq. (5) transforms into
{

1

ρ
∂ρ(ρ∂ρ) −

[
l2

α2ρ2 + M2w2ρ2 − γ

]}
R(ρ) = 0, (7)

so that, with the help of (6) the last term in the above equa-
tion is rewritten as γ = E2 − M2 − 2Mw − k2 − λ2. This
equation can be transformed into another one by a change of
the variable ξ = Mwρ2. The result is

R′′(ξ) + 1

ξ
R′(ξ) −

(
l2

4α2ξ2 + 1

4
− γ

4Mwξ

)
R(ξ) = 0.

(8)

Now we proceed with a study of the asymptotic limit at the
origin and at infinity. In the following, we assume

R(ξ) = ξ
|l|
2α e− ξ

2 F(ξ). (9)

Substituting of R(ξ) in this form in Eq. (8) results in

ξF ′′(ξ) +
( |l|

α
+ 1 − ξ

)
F ′(ξ)

−
(

l

2α
+ 1

2
− γ

4Mw

)
F(ξ) = 0 (10)

where γ was defined before. We can see that this equation
is just the one for the confluent hypergeometric function,
xF ′′(x)+ (c+ 1 − x)F ′(x)− aF(x) = 0, whose solution is
a polynomial of degree n. Naturally there is a convergence
problem in this solution when n tends to infinity. To avoid
this divergence, we can choose the independent term, the
last term, in Eq. (10) to be equal to a non-negative number.
Mathematically we have

|l|
2α

+ 1

2
− γ

4Mw
= −n, (11)

and using the respective expressions for γ and solving the
resultant equation for E we obtain the eigenvalues for this
problem,

E2 = M2 + 4Mw

(
n + |l|

2α
+ 1

)
+ k2 + λ2, (12)

and the eigenfunctions sets,

�(�r , t) = Cn,l e
−i(Et−kz−lφ−λx)ρ

|l|
α e− Mw

2 ρ2
F

×
(

−n,
|l|
α

+ 1, Mwρ2
)

. (13)

Note that the dependence on nonlocal parameters of the back-
ground for energy levels as well as for the eigenfunctions is

responsible in breaking of the degeneracy of the energy lev-
els due to the presence of the parameter α. We observe that
the present result is similar to the one obtained by Boumali
and Messai [35] for the Klein–Gordon oscillator in the back-
ground of the cosmic string in Einstein gravity. Further, in
the weak oscillator limit w → 0, our particles behave like
free particles. Moreover, if the flat spacetime limit α −→ 1
is taken the results in [34] are reproduced.

3 Klein–Gordon oscillator in the background of a
magnetic cosmic string in a Kaluza–Klein theory

Now, let us consider the quantum dynamics of a particle mov-
ing in the magnetic cosmic string background. In the Kaluza–
Klein theory [2,38,39], the corresponding metric with a mag-
netic flux � passing along the symmetry axis of the string
assumes the following form:

ds2 = −dt2 + dρ2 + α2ρ2dφ2 + dz2 +
(

dx + �

2π
dφ

)2

(14)

where cylindrical coordinates are used. The quantum dynam-
ics is described by Eq. (3) with the following change in the
inverse matrix tensor gμν :

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0

0 1 0 0 0

0 0 1
α2ρ2 0 − �

2πα2ρ2

0 0 0 1 0

0 0 − �
2πα2ρ2 0 1 + �2

4π2α2ρ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

In this way Eq. (3) becomes
{

1

ρ
∂ρ(ρ∂ρ) + [∂φ − (�/2π)∂x ]2

α2ρ2 − M2w2ρ2 + γ

}
= 0

(16)

with γ = −∂2
t + ∂2

z + ∂2
x − 2Mw − M2. Assuming a tem-

poral independence of our background, we can choose the
following ansatz:

� = e−i(Et−kz−lφ−λx)R(ρ); (17)

thus, Eq. (16) transforms into

{
1

ρ
∂ρ(ρ∂ρ) −

[
(l − λ�/2π)2

α2ρ2 + M2w2ρ2 − γ

]}
R(ρ) = 0,

(18)

so that with the help of (17) the last term in the above equation
becomes γ = E2 − M2 − 2Mw − k2 −λ2. After the change
of variables x = Mwρ2, this equation takes the form
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R′′(x) + 1

x
R′(x) −

(
β2

4α2x2 + 1

4
− γ

4Mwx

)
R(x) = 0.

(19)

Now, we study the behavior of our function in the small x
and large x limits. Asymptotically at x → 0 we find the
following expression:

R′′(x) + 1

x
R′(x) − β2

4α2x2 R(x) = 0, (20)

whose solution is given by R(x) = x
|β|
2α . In the other limit,

x → ∞, the resultant equation is

R′′(x) − 1

4
R(x) = 0, (21)

which yields R(x) = e− x
2 . A general solution can be deter-

mined by choosing

R(x) = x
|β|
2α e− x

2 F(x). (22)

Substitution of this expression into Eq. (19) results in

xF ′′(x) +
( |β|

α
+ 1 − x

)
F ′(x)

−
(

β

2α
+ 1

2
− γ

4Mw

)
F(x) = 0, (23)

where γ is as before and β = l−λ�/2π . Again this equation
is of the same form as the one describing the confluent hyper-
geometric function xF ′′(x)+(c+1−x)F ′(x)−aF(x) = 0.
Requiring the convergence of the corresponding series, we
arrive at the following condition:

β

2α
+ 1

2
− γ

4Mw
= −n. (24)

Using the respective expressions for β and γ and solving the
resultant equation for E , we obtain the following eigenvalues
problems:

E2 = M2 + 4Mw

(
n + |l − λ�/2π |

2α
+ 1

)
+ k2 + λ2.

(25)

Compared to the case without magnetic flux string in the cen-
ter of the defect, the angular quantum number is shifted by a
quantity related with the magnetic field due to the presence of
an Aharonov–Bohm flux in a magnetic string. Additionally,
we can see that the presence of the defects breaks the degen-
eracy of the energy levels due to the presence of the curvature
source. Besides, in the absence of magnetic fields, � = 0,
the results of the previous section are obtained. Note that the
presence of a magnetic string and the Aharonov–Bohm flux
modifies the energy spectrum; this effect is known as the
Aharonov–Bohm effect for a bound state [41,55]. In fact,
the energy levels are shifted by a quantity proportional to the
Aharonov–Bohm flux.

4 Klein–Gordon oscillator in cosmic dispiration
background in a Kaluza–Klein theory

Now we investigate the Klein–Gordon oscillator in a cos-
mic dispiration background in Kaluza–Klein theory [2]. Let
us study the concurrency of gravitational effects due to the
torsion and curvature and electromagnetic contributions due
to the presence of this topological defect. In this way, we
consider the magnetic cosmic string with torsion source
besides curvature and electromagnetic ones. The correspond-
ing background is described by the metric [2]

ds2 = −dt2 + dρ2 + α2ρ2dφ2 + (dz + Jdφ)2

+
(

dx + �

2π
dφ

)2

(26)

with α, J , and �, respectively, the sources of curva-
ture, torsion, and the electromagnetic field. The coordinates
(t, ρ, φ, z, x) are defined as before, and the inverse metric
tensor is

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0

0 1 0 0 0

0 0 1
α2ρ2 − J 2

α2ρ2 − �
2πα2ρ2

0 0 J
α2ρ2 1 + J 2

α2ρ2
� J

2πα2ρ2

0 0 − �
2πα2ρ2

� J
2πα2ρ2

(
1 + �2

4π2α2ρ2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(27)

In this way Eq. (3) becomes{
∂2

∂ρ2 + 1

ρ

∂

∂ρ
+ (∂φ− J∂z−�∂y/2π)2

α2ρ2 − M2w2ρ2 + γ

}

×�(t, �r) = 0, (28)

with γ = −∂2
t + ∂2

z + ∂2
x − 2Mw − M2. This partial dif-

ferential equation does not involve an explicit dependence
on the variables t, φ, z, and x , and therefore, has transla-
tional symmetry around these axes. These properties allow
us to suppose a general solution of Eq. (28) in the form
e−i Et+ilφ+ikz+iλy R(ρ). Thus,

1

ρ

d

dρ

[
ρ

dR(ρ)

dρ

]
−

[
�2

α2ρ2 − M2w2ρ2 − γ

]
R(ρ) = 0.

(29)

Now � = l − Jk − λ�/2π and γ = E2 − M2 − 2Mw −
k2 − λ2. Taking ξ = Mwρ2, this radial equation transforms
into

d2R(ξ)

dξ2 + 1

ξ

dR(ξ)

dξ
−

(
�2

4α2ξ2 + 1

4
− γ

4Mwξ

)
R(ξ) = 0.

(30)

An analysis of the divergence at the origin and at infinity sug-

gests the use of the general solution R(ξ) = ξ
|�|
2α e− ξ

2 F(ξ).
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After some calculations, we obtain the final equation for
F(ξ), which should have the same form as the confluent
hypergeometric equation,

ξ
d2F(ξ)

dξ2 + (c + 1 − ξ)
dF(ξ)

dξ
− aF(ξ) = 0,

ξ
d2F(ξ)

dξ2 +
( |�|

α
+ 1 − ξ

)
dF(ξ)

dξ

−
( |�|

2α
+ 1

2
− γ

4Mw

)
F(ξ) = 0

� = l − Jk − λ�

2π
. (31)

A solution for this equation is a polynomial of degree n in
ξ of the form F(ξ) = ∑

anξn . We can see that this solution
diverges for all values of n, which represents the degree of
the hypergeometric series. This divergence is avoided by a
truncation method in the coefficients an . If we assume that
an = 0 for a finite numbers of terms in the polynomial series,
then we guarantee normality of our solution in ξ to ξ → 0
and avoid the divergence to ξ → ∞. With a general expres-
sion for the coefficients an , we conclude that to ensure this
integrability, we must make a = −n. Thus,

|�|
2α

+ 1

2
− γ

4Mw
= −n. (32)

This condition gives us the energy levels and eigenfunctions
for our scalar particle in the form

E2 = M2+4M

(
n+ |l− Jk−λ�/2π |

2α
+1

)
w+k2+λ2

(33)

and the eigenfunctions sets

�(�r , t) = Cn,l e
−i(Et−kz−lφ−λx)ρ

|�|
α e− Mw

2 ρ2
F

×
(

−n,
|�|
α

+ 1, Mwρ2
)

. (34)

We have now an important result: all global parameters of
the background appear in the energy levels of the Klein–
Gordon oscillator; however, this background can be locally
flat. The energy degeneracy is absent due to the presence of
curvature and torsion sources. As pointed out previously, this
result allows us to compensate for the torsion contribution by
adjusting the magnetic field appropriately, and the medium
becomes torsion-free. Note that the term λ�/2π in (33) is
responsible for the electromagnetic Aharonov–Bohm effect
[41,55] for a bound state due to the presence of magnetic flux
� due to a solenoid field in the extra dimension. The term Jk
in (33) is present due to a torsion of the topological defect and
J is associated with the Burgers vector of cosmic dispiration.
The quantum effect associated to this term in the energy spec-
trum of Klein–Gordon oscillator is responsible for the shift in
this level known as the gravitational Aharonov–Bohm effect

[2,3] due to the torsion of this spacetime. In this way, we
have three different contributions which modify the energy
levels of the Klein–Gordon oscillator. The first one is due
to the conical nature of spacetime, represented by the deficit
angle α. The second is due to the contribution of the torsion
represented by J and the third is due to the electromagnetic
field represented by �, in this form E(α, J,�).

5 KG oscillator in cosmic dislocation in
Som–Raychaudhuri spacetime in Kaluza–Klein
theory

Recent observational data indicate rotation as well as expan-
sion of our universe. This dynamics has called a great atten-
tion to the establishment of a theory aimed to describe these
scenarios. One of these theories was developed by Gödel in
the 1950s for an universe with rigid rotation characterized
by a term � in the metric and with a curvature source known
as a Weyssenhoff–Raabe fluid [56,57]. Some studies of the
quantum dynamics in this spacetime were carried out for
(3 + 1)-dimensional spacetimes [58–60]. In this section we
consider a cosmic dispiration in a flat Gödel solution or Som–
Raychaudhuri solution in Kaluza–Klein theory. We assume
that the charged scalar particle is exposed to a uniform mag-
netic field. This field is also introduced using the Kaluza–
Klein theory via the geometry of the spacetime. Due to the
importance of the rotation in actual scenarios, we can use the
Kaluza–Klein theory to describe the quantum dynamics of a
Klein–Gordon particle in this spinning background. Now, we
present a new solution for the Som–Raychaudhuri spacetime
with a topological defect of a cosmic dispiration type, local-
ized parallel to the rotation axis. We have considered this
solution in Kaluza–Klein theory and have introduced this
by extra dimensions, an Aharonov–Bohm flux and a uniform
magnetic field. In contrast with the previous section where we
have studied quantum dynamics in a topological defect back-
ground, here we consider the influence of the introduction of
a cosmic string in a Gödel-type universe. Let us consider the
Som–Raychaudhuri solution of the Einstein field equation
[57] with a cosmic dispiration, described in a Kaluza–Klein
theory with a spinning torsion source along the symmetry
axis of background spacetimes,

ds2 = −(dt+α�ρ2dφ)2+dρ2+α2ρ2dφ2+(dz+ Jdφ)2

+[dx+(�/2π+eBρ2/2)dφ]2. (35)

Here � is associated with the rotational source of the space.
This solution is a backbone of a cosmology occurring at a
large scale. The rotation parameter � characterizes this scale;
this parameter also can viewed as the scale of a magnetic-
type, or twist, gravitational field [59,61]. This spacetime is
characterized by the causality safe region 0 < ρ < 1/�
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[62,63]. In this region of this spacetime we have no closed
timelike curves [62,63]. Recently the quantum dynamics of
scalar and spinorial particles have been studied in this space-
time and similarities with quantum dynamics in the pres-
ence of an external magnetic field were observed in the four-
dimensional solution of Som–Raychaudhuri [59,61] and in
M-Theory in Ref. [64]. Based on this similarity, we have
obtained the solution (35) in Kaluza–Klein theory where we
have considered a Som–Raychaudhuri solution with cosmic
dispiration and an inclusion of a uniform magnetic field via
extra dimension It is easy to write the matrix gμν(�r) and from
it obtain gμν(�r),

gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�2ρ2 − 1 0 −�
α

� J
α

(
� �
2πα

+ eB�
2α

ρ2
)

0 1 0 0 0

−�
α

0 1
α2ρ2 − J 2

α2ρ2 −
(

�
2πα2ρ2 + eB

2α2

)
� J
α

0 J
α2 ρ2 1 + J 2

α2ρ2

(
� J

2πα2ρ2 + eB J
2α2

)
(

� �
2πα

+ eB�
2α

ρ2
)

0 −
(

�
2πα2ρ2 + eB

2α2

) (
� J

2πα2ρ2 + eB J
2α2

) (
1 + �2

4π2α2ρ2 + e� B
2πα2 + e2B2ρ2

4α2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (36)

In this way the square root of the determinant of this matrix
is given by

√−g = αρ. Therefore we can write the Klein–
Gordon equation (3) in this background as

{
∂2

∂ρ2 + 1

ρ

∂

∂ρ
+ (∂φ − J∂z − �∂y/2π)2

α2ρ2

+
[
−M2w2 +

(
�∂t + eB∂y

2α

)2
]

ρ2 + γ

}
�(t, �r) = 0,

γ = −∂2
t −

(
∂φ − J∂z − �∂y

2π

) (
2�

α
∂t + eB

α2 ∂y

)

+ ∂2
z + ∂2

y − 2Mw − M2. (37)

This equation is independent of the variables t, φ, z, and y
and allows us to use the ansatz in the general form � ∝
e−i Et+ilφ+ikz+iλy R(ρ). Therefore,

1

ρ

d

dρ

[
ρ

d

dρ
R(ρ)

]
−

{
(l − Jk − λ�/2π)2

α2ρ2

+
[
M2w2 +

(
eBλ

2α
− � E

)2
]

ρ2 − γ

}
R(ρ) = 0;

γ = E2 +
(
l − Jk − λ�

2π

) (
eBλ

α2 − 2�E

α

)

− M2 − 2Mw − k2 − λ2. (38)

It is not difficult to show that this equation is the same as a
confluent hypergeometric equation looking like

x
d2R(x)

dx2 +
( |β|

α
+ 1 − x

)
dR(x)

dx

−
( |β|

2α
+ 1

2
− γ

4δ

)
R(x) = 0,

β = l − Jk − λ�

2π
,

δ =
√
M2w2 +

(
eBλ

2α
− � E

)2

. (39)

The solution of this equation is a polynomial of order xn . For
all limits, this function diverges. This blow-up is avoided

assuming a = −n in the general expression of the coeffi-
cients of the hypergeometric series. With this condition the
energy levels of our particle are

E2 = M2 −
(
l − Jk − λ�

2π

) (
eBλ

α2 − 2�E

α

)

+ 4

√
M2w2 +

(
� E − eBλ

2α

)2

×
(
n + |l − Jk − λ�

2π
|

2α
+ 1

2

)
+ 2Mw + k2 + λ2.

(40)

Apparently we can see that in the absence of a homogeneous
magnetic field as well as of rotation sources, the results of
the previous section are reproduced. We can also see that the
external sources have an important role in the dynamics of
our particle due to the explicit dependence on these parame-
ters. Assuming that the physical laws are true in any temporal
scales, we believe that the rotation, magnetic fields, curva-
ture, and torsion sources had played an important role in the
dynamics of our universe in the early evolution epoch and,
therefore, our contribution has an interesting application.

It is important to study some limits. Let us consider the
weak oscillator as well as rotation-free limit of spacetimes,
which is equivalent to the assumption (w,�) → 0, in
Eq. (40); in this limit we have no influence of the Klein–
Gordon oscillator and the Som–Raychaudhuri geometry.
After some calculations, we obtain the following result:
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E2 = M2 + 2eBλ

α

[
n + |l − k J − λ�

2π
|

2α

− l − k J − λ�
2π

2α
+ 1

2

]
+ k2 + λ2, (41)

which is exactly the result of Eq. (35) of Ref. [2], where one
of us has obtained the relativistic Landau levels for a scalar
particle in Kaluza–Klein theory. Now we consider the limit
where we do not have a Klein–Gordon oscillator, and we
obtain from (40) the following energy eigenvalues:

E = �

(
2n + |l − k J − λ�

2π
|

α
− l − k J − λ�

2π

α
+ 1

)

±
{(

�2

(
2n+ |l−k J− λ�

2π
|

α
− l−k J− λ�

2π

α
+ 1

2

)

− eBλ

α

)
×

[
2n+ |l−k J− λ�

2π
|

α
− l−k J− λ�

2π

α
+1

]

+ k2 + M2 + λ2

}1/2

. (42)

The eigenvalues (42) represent the energy levels for a free
scalar particle in a Som–Raychaudhuri spacetime pierced by
a cosmic dispiration and a uniform magnetic field introduced
in a geometric way by Kaluza–Klein theory. Note the influ-
ence of topological defects in the eigenvalues: in the limit
where we have B → 0 in (42) we obtain the eigenvalues of
the quantum dynamics of a scalar quantum particle in (4+1)-
dimensional Som–Raychaudhuri spacetime, given by

E = �

(
2n + |l − k J − λ�

2π
|

α
− l − k J − λ�

2π

α
+ 1

)

±
√√√√

�2

(
2n+ |l−k J− λ�

2π
|

α
− l−k J− λ�

2π

α
+ 1

2

)2

+k2+M2+λ2.

(43)

This result is the generalization of the results obtained previ-
ously in Refs. [59,60] for a (4 + 1)-dimensional Gödel sce-
nario in the presence of cosmic dispiration. We can observe
in (43) the dependence of the parameter J , which is related
with the Burgers vector of the topological defect associ-
ated with the torsion of the spacetime. In the presence of
rotation and curvature sources, one can consider the limit
(J,�, B, w) → 0 in (40). After a some algebra we obtain
the result

E =
(

2n + |l|
α

+ l

α
+ 1

)
�

±
√(

2n + |l|
α

+ l

α
+ 1

)2

�2 + M2 + k2. (44)

This is equivalent to the energy levels in the Gödel-type
spacetimes studied by us [59–61,64]. Although Eq. (40)
has a cumbersome form, some limits show important results
in describing other simple physical systems with topolog-
ical/electromagnetic interactions through simple manipula-
tions with that equation. Finally, we can see that the degener-
acy of the energy levels, in this case, is strongly broken due
to the presence of curvature, torsion, magnetic fields, and the
rotation source. It is important that we can observe a Landau
structure in all previously studied cases.

6 Summary

The aim of this paper was to investigate the quantum dynam-
ics of a scalar particle interacting harmonically with a gravita-
tional background of topological defects, via a Klein–Gordon
oscillator description, in the presence of a class of spacetimes
in Kaluza–Klein theory. We determine the manner in which
the non-trivial topology due to the topological defect, elec-
tromagnetic field, and rotation of this background modifies
the energy spectrum and wave function of the Klein–Gordon
oscillator. This perturbation in the eigenvalues is compared
with the flat spacetime case, and these results can be used to
investigate the presence of these defects in the cosmos. Here
we investigate a harmonic interaction that can be used for a
simulation of a series of physical systems, such as the vibra-
tional spectrum of a diatomic molecule [23], the binding of
heavy quarks [24,25], and the quark–antiquark interaction
[30]. The possibility to use the modification in the spectra of
the KG oscillator to probe the existence of these topological
defects was noticed in the results obtained. In fact it is clear,
from the observational point of view, that to have an observ-
able modification in the energy eigenvalues, we need a huge
number of particles in the states, otherwise the magnitude of
the effect to a real spectrum may not be strong enough to be
observed.

We have studied the quantum dynamics of a Klein–
Gordon particle interacting with external field sources, by
using the five-dimensional version of general relativity. The
quantum dynamics in the usual as well as magnetic cosmic
string cases allow us to obtain the energy levels and the eigen-
functions depending on the external parameters characteriz-
ing the background spacetimes, a result known by the gravi-
tational analog of the well-studied Aharonov–Bohm effect.

We have investigated the Klein–Gordon oscillator in the
cosmic string background in a Kaluza–Klein theory and
obtained the energy eigenvalues and eigenfunctions, which
turn out to depend on the parameter α, which characterizes
the cosmic string. Note that in the four-dimensional limit we
recover the results found by Boumali et al. [35]. For the case
of a Klein–Gordon oscillator in the presence of a magnetic
flux string in Kaluza–Klein theory, we obtain the result that
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the energy levels depend on the Aharonov–Bohm flux and the
parameter α. The Klein–Gordon equation for the KG oscil-
lator in cosmic dispiration was investigated, and the energy
levels turn out to depend on the parameter α, the dislocation
parameter (Burgers vector modulus) J , and the Aharonov–
Bohm flux. The inclusion of torsion has an important role
to play in this dynamics. By the results in this background,
it becomes possible to compensate for the elastic contribu-
tion introduced by the topological defect, by a fine tuning
of the external magnetic field strength. The degeneracy of
the energy levels is strongly broken due to the presence of
curvature and torsional sources in these expressions.

Note that in Sects. 2, 3, and 4 we have studied the influence
of topological defects in Kaluza–Klein theory on the energy
levels of a Klein–Gordon oscillator in order to observe the
influence of this structure on the energy levels and wave func-
tions. In Sect. 5, we have studied the Klein–Gordon oscillator
for a (4+1)-dimensional Som–Raychaudhuri solution with a
topological defect; this study can be employed to investigate
other quantum systems.

We have obtained the spectrum and wavefunction for
Klein–Gordon oscillator in the background of the cosmic
dispiration in a Som–Raychaudhuri spacetime in a Kaluza–
Klein theory in the presence of a uniform magnetic field and
a magnetic flux. We introduced a uniform magnetic field and
Aharonov–Bohm flux via Kaluza–Klein theory. The energy
levels and eigenfunctions for the Klein–Gordon oscillator
in this geometry were obtained, and we demonstrated their
dependence on the parameters characterizing the spacetime
in (4 + 1) dimensions, such as (�, α, J, ) associated to the
rotation, deficit angle, and torsion of spacetime, the exter-
nal magnetic field B, and the magnetic flux � introduced by
Kaluza–Klein theory. Note that in the appropriate limit we
obtain the results of the previous section, � 	−→ 0, B 	−→ 0,
that is, the cosmic dispiration case. In the case where α = 1,
� = 0, we obtain the results of Wang et al. [52]. In the
limit of � = 0, a spectrum similar to the Landau levels is
recovered. Note that this dynamics in the presence of the
confining potential due to the Klein–Gordon oscillator rein-
forces the characteristics of the quantum dynamics observed
in this Gödel-type spacetime [59–61], which are character-
ized by the similarity with the Landau problem for a charged
particle on a surface exposed to a uniform magnetic field.
Based on this analogy, Druker et al. [59] have suggested the
picture of a holographic description for a single chronolog-
ically safe region. In the same paper they have conjectured
that this discussion can be extended for a 4 + 1-dimensonal
Gödel solution. In this article we demonstrated that this sim-
ilarity with Landau levels occurs in a (4 + 1)-dimensional
Gödel-type solution as well and we have considered a richer
structure of the spacetime: including a topological defect. If
we consider the analogy between the quantum dynamics in a
chronologically safe region in a Som–Raychaudhuri space-

time and Landau levels, we can consider applications of these
results to the quantum dynamics in Hall droplets of finite size
[65]. Because of this analogy, we can think of applications
in the Hall effect in a droplet of finite size in systems of con-
densed matter. We can also use the results found here in our
harmonic confinement via the Klein–Gordon oscillator in the
Hall effect in droplets of finite size with harmonic confine-
ment of electrons, as was done in Ref. [66]. We claim that
these results can be used in a generalization of the quantum
Hall effect in (4 + 1) dimensions [67–69], and they can be
related with quantum dynamics in gravity-based systems in
higher dimensions due to the already mentioned analogy of
quantum dynamics in Gödel-type solutions with Landau lev-
els on curved surfaces [70,71]. In the limit w → 0 we have
obtained for the first time the spectrum of a scalar particle
in a Som–Raychaudhuri spacetime with a topological defect,
which combines the curvature and the torsion into a dispi-
ration, in the presence of a uniform field and magnetic flux
introduced via Kaluza–Klein theory. These energy levels (42)
have several contributions due to the rotation of spacetime �

of the parameter J , which is related with torsion.
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