75,037 research outputs found
Possible solution of the Coriolis attenuation problem
The most consistently useful simple model for the study of odd deformed
nuclei, the particle-rotor model (strong coupling limit of the core-particle
coupling model) has nevertheless been beset by a long-standing problem: It is
necessary in many cases to introduce an ad hoc parameter that reduces the size
of the Coriolis interaction coupling the collective and single-particle
motions. Of the numerous suggestions put forward for the origin of this
supplementary interaction, none of those actually tested by calculations has
been accepted as the solution of the problem. In this paper we seek a solution
of the difficulty within the framework of a general formalism that starts from
the spherical shell model and is capable of treating an arbitrary linear
combination of multipole and pairing forces. With the restriction of the
interaction to the familiar sum of a quadrupole multipole force and a monopole
pairing force, we have previously studied a semi-microscopic version of the
formalism whose framework is nevertheless more comprehensive than any
previously applied to the problem. We obtained solutions for low-lying bands of
several strongly deformed odd rare earth nuclei and found good agreement with
experiment, except for an exaggerated staggering of levels for K=1/2 bands,
which can be understood as a manifestation of the Coriolis attenuation problem.
We argue that within the formalism utilized, the only way to improve the
physics is to add interactions to the model Hamiltonian. We verify that by
adding a magnetic dipole interaction of essentially fixed strength, we can fit
the K=1/2 bands without destroying the agreement with other bands. In addition
we show that our solution also fits 163Er, a classic test case of Coriolis
attenuation that we had not previously studied.Comment: revtex, including 7 figures(postscript), submitted to Phys.Rev.
Continuing the biological exploration of Mars
Mars has been an object of interest for the better part of this century. To a biologist, Mars assumes special importance because many aspects of the theory of chemical evolution for the origin of life can be tested there. The central idea of this theory is that life on a suitable planet arises through a process in which the so-called biogenic elements combine to form increasingly more complex molecules under the influence of naturally-occurring energy sources ultimately resulting in the formation of replicating organic molecules. The biogenic elements are present on Mars today. Furthermore, the available evidence also strongly suggests that Mars may have had an early history similar to that of the Earth, including a period in which large amounts of liquid water once flowed on its surface and a denser atmosphere and higher global temperatures prevailed. This is important since many lines of evidence indicate that living organisms were already present on the Earth within the first billion years after its formation at a time when the environment on Mars may have closely resembled that of Earth. Our current knowledge of the state of chemical evolution on Mars can best be described as paradoxical. Most of what we have learned has come from experiments performed on the Viking landers. The combination of planned investigations covered a broad range of techniques to detect signs of chemical evolution. The most surprising data from all of these was the absence of any detectable quantities of organic compounds at the two landing sites. On the other hand, the Viking experiments did indicate that the Martian surface samples contained unidentified strong oxidant(s) that could account for their absence
The solar system: Importance of research to the biological sciences
An attempt is made to describe the scope of scientific areas that comprise the current field of exobiology in the United States. From investigations of astrophysical phenomena that deal with the birth of stars and planetary systems to questions of molecular biology involving phylogenetic relationships among organisms, from attempts to simulate the synthesis of biological precursor molecules in the chemistry laboratory to making measurements of the organic constituents of Titan's atmosphere, these researches all converge toward a common objective--answering the question of how life came about in the universe
Analysis of a synthetic aperture radiating interferometer navigation satellite concept Interim technical report
Synthetic aperture interferometer navigation satellite concep
Derivation and assessment of strong coupling core-particle model from the Kerman-Klein-D\"onau-Frauendorf theory
We review briefly the fundamental equations of a semi-microscopic
core-particle coupling method that makes no reference to an intrinsic system of
coordinates. We then demonstrate how an intrinsic system can be introduced in
the strong coupling limit so as to yield a completely equivalent formulation.
It is emphasized that the conventional core-particle coupling calculation
introduces a further approximation that avoids what has hitherto been the most
time-consuming feature of the full theory, and that this approximation can be
introduced either in the intrinsic system, the usual case, or in the laboratory
system, our preference. A new algorithm is described for the full theory that
largely removes the difference in complexity between the two types of
calculation. Comparison of the full and approximate theories for some
representative cases provides a basis for the assessment of the accuracy of the
traditional approach. We find that for well-deformed nuclei, e.g. 157Gd and
157Tb, the core-coupling method and the full theory give similar results.Comment: revtex, 3 figures(postscript), submitted to Phys.Rev.
Novel multipurpose timer for laboratories
Multipurpose digital delay timer simultaneously controls both a buffer pump and a fraction-collector. Timing and control may be in 30-second increments for up to 15 hours. Use of glassware and scintillation vials make it economical
- …