53,472 research outputs found

    Novel multipurpose timer for laboratories

    Get PDF
    Multipurpose digital delay timer simultaneously controls both a buffer pump and a fraction-collector. Timing and control may be in 30-second increments for up to 15 hours. Use of glassware and scintillation vials make it economical

    Tritiated alumina serves as reagent for self-labeling analysis

    Get PDF
    Tritiated alumina, prepared by exchange of the surface hydroxyl groups with tritiated water, is a suitable reagent for exchange-labeling of specific compounds in low concentrations prior to chromatographic analysis. In a chromatographic column, it detects and measures submicrogram quantities of material

    Derivation and assessment of strong coupling core-particle model from the Kerman-Klein-D\"onau-Frauendorf theory

    Get PDF
    We review briefly the fundamental equations of a semi-microscopic core-particle coupling method that makes no reference to an intrinsic system of coordinates. We then demonstrate how an intrinsic system can be introduced in the strong coupling limit so as to yield a completely equivalent formulation. It is emphasized that the conventional core-particle coupling calculation introduces a further approximation that avoids what has hitherto been the most time-consuming feature of the full theory, and that this approximation can be introduced either in the intrinsic system, the usual case, or in the laboratory system, our preference. A new algorithm is described for the full theory that largely removes the difference in complexity between the two types of calculation. Comparison of the full and approximate theories for some representative cases provides a basis for the assessment of the accuracy of the traditional approach. We find that for well-deformed nuclei, e.g. 157Gd and 157Tb, the core-coupling method and the full theory give similar results.Comment: revtex, 3 figures(postscript), submitted to Phys.Rev.

    Controlled Ecological Life Support System. Life Support Systems in Space Travel

    Get PDF
    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station

    Classical mappings of the symplectic model and their application to the theory of large-amplitude collective motion

    Full text link
    We study the algebra Sp(n,R) of the symplectic model, in particular for the cases n=1,2,3, in a new way. Starting from the Poisson-bracket realization we derive a set of partial differential equations for the generators as functions of classical canonical variables. We obtain a solution to these equations that represents the classical limit of a boson mapping of the algebra. The relationship to the collective dynamics is formulated as a theorem that associates the mapping with an exact solution of the time-dependent Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective motion. The models thus obtained also provide a test of methods for constructing an approximately decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our earlier works reproduces the main results of the theorem.Comment: 23 pages, LaTeX using REVTeX 3.

    On Dimensional Degression in AdS(d)

    Full text link
    We analyze the pattern of fields in d+1 dimensional anti-de Sitter space in terms of those in d dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group-theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS(d+d′^\prime) and massless spin one-half, spin one, and spin two fields in AdS(d+1). The mass spectra of the resulting towers of fields in AdS(d) are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev in [1] by a different method.Comment: 30 page

    Foundations of self-consistent particle-rotor models and of self-consistent cranking models

    Get PDF
    The Kerman-Klein formulation of the equations of motion for a nuclear shell model and its associated variational principle are reviewed briefly. It is then applied to the derivation of the self-consistent particle-rotor model and of the self-consistent cranking model, for both axially symmetric and triaxial nuclei. Two derivations of the particle-rotor model are given. One of these is of a form that lends itself to an expansion of the result in powers of the ratio of single-particle angular momentum to collective angular momentum, that is essentual to reach the cranking limit. The derivation also requires a distinct, angular-momentum violating, step. The structure of the result implies the possibility of tilted-axis cranking for the axial case and full three-dimensional cranking for the triaxial one. The final equations remain number conserving. In an appendix, the Kerman-Klein method is developed in more detail, and the outlines of several algorithms for obtaining solutions of the associated non-linear formalism are suggested.Comment: 29 page

    Harrison transformation of hyperelliptic solutions and charged dust disks

    Full text link
    We use a Harrison transformation on solutions to the stationary axisymmetric Einstein equations to generate solutions of the Einstein-Maxwell equations. The case of hyperelliptic solutions to the Ernst equation is studied in detail. Analytic expressions for the metric and the multipole moments are obtained. As an example we consider the transformation of a family of counter-rotating dust disks. The resulting solutions can be interpreted as disks with currents and matter with a purely azimuthal pressure or as two streams of freely moving charged particles. We discuss interesting limiting cases as the extreme limit where the charge becomes identical to the mass, and the ultrarelativistic limit where the central redshift diverges.Comment: 20 pages, 9 figure

    Low energy dynamics of spinor condensates

    Full text link
    We present a derivation of the low energy Lagrangian governing the dynamics of the spin degrees of freedom in a spinor Bose condensate, for any phase in which the average magnetization vanishes. This includes all phases found within mean-field treatments except for the ferromagnet, for which the low energy dynamics has been discussed previously. The Lagrangian takes the form of a sigma model for the rotation matrix describing the local orientation of the spin state of the gas
    • …
    corecore