869 research outputs found

    Recursion Relations in Liouville Gravity coupled to Ising Model satisfying Fusion Rules

    Full text link
    The recursion relations of 2D quantum gravity coupled to the Ising model discussed by the author previously are reexamined. We study the case in which the matter sector satisfies the fusion rules and only the primary operators inside the Kac table contribute. The theory involves unregularized divergences in some of correlators. We obtain the recursion relations which form a closed set among well-defined correlators on sphere, but they do not have a beautiful structure that the bosonized theory has and also give an inconsistent result when they include an ill-defined correlator with the divergence. We solve them and compute the several normalization independent ratios of the well-defined correlators, which agree with the matrix model results.Comment: Latex, 22 page

    Supergravity Instabilities of Non-Supersymmetric Quantum Critical Points

    Full text link
    Motivated by the recent use of certain consistent truncations of M-theory to study condensed matter physics using holographic techniques, we study the SU(3)-invariant sector of four-dimensional, N=8 gauged supergravity and compute the complete scalar spectrum at each of the five non-trivial critical points. We demonstrate that the smaller SU(4)^- sector is equivalent to a consistent truncation studied recently by various authors and find that the critical point in this sector, which has been proposed as the ground state of a holographic superconductor, is unstable due to a family of scalars that violate the Breitenlohner-Freedman bound. We also derive the origin of this instability in eleven dimensions and comment on the generalization to other embeddings of this critical point which involve arbitrary Sasaki-Einstein seven manifolds. In the spirit of a resurging interest in consistent truncations, we present a formal treatment of the SU(3)-invariant sector as a U(1)xU(1) gauged N=2 supergravity theory coupled to one hypermultiplet.Comment: 46 page

    Green's Functions and Non-Singlet Glueballs on Deformed Conifolds

    Full text link
    We study the Laplacian on Stenzel spaces (generalized deformed conifolds), which are tangent bundles of spheres endowed with Ricci flat metrics. The (2d-2)-dimensional Stenzel space has SO(d) symmetry and can be embedded in C^d through the equation \sum_{i = 1}^d {z_i^2} = \epsilon^2. We discuss the Green's function with a source at a point on the S^{d-1} zero section of TS^{d-1}. Its calculation is complicated by mixing between different harmonics with the same SO(d) quantum numbers due to the explicit breaking by the \epsilon-deformation of the U(1) symmetry that rotates z_i by a phase. A similar mixing affects the spectrum of normal modes of warped deformed conifolds that appear in gauge/gravity duality. We solve the mixing problem numerically to determine certain bound state spectra in various representations of SO(d) for the d=4 and d=5 examples.Comment: 52 pages, 3 figure

    Evidence for Skyrmion crystallization from NMR relaxation experiments

    Full text link
    A resistively detected NMR technique was used to probe the two-dimensional electron gas in a GaAs/AlGaAs quantum well. The spin-lattice relaxation rate (1/T1)(1/T_{1}) was extracted at near complete filling of the first Landau level by electrons. The nuclear spin of 75^{75}As is found to relax much more efficiently with T0T\to 0 and when a well developed quantum Hall state with Rxx0R_{xx}\simeq 0 occurs. The data show a remarkable correlation between the nuclear spin relaxation and localization. This suggests that the magnetic ground state near complete filling of the first Landau level may contain a lattice of topological spin texture, i.e. a Skyrmion crystal

    Supersymmetric Three-Form Flux Perturbations on AdS5AdS_5

    Full text link
    We consider warped type IIB supergravity solutions with three-form flux and N=1{\cal N}=1 supersymmetry, which arise as the supergravity duals of confining gauge theories. We first work in a perturbation expansion around AdS5×S5AdS_5 \times S^5, as in the work of Polchinski and Strassler, and from the N=1{\cal N}=1 conditions and the Bianchi identities recover their first-order solution generalized to an arbitrary N=1{\cal N}=1 superpotential. We find the second order dilaton and axion by the same means. We also find a simple family of exact solutions, which can be obtained from solutions found by Becker and Becker, and which includes the recent Klebanov--Strassler solution.Comment: 19 pages. reference added, minor clarifications. v3: reference to non-Abelian BPS monopole solution corrected (Chamseddine-Volkov

    D-Branes on the Conifold and N=1 Gauge/Gravity Dualities

    Full text link
    We review extensions of the AdS/CFT correspondence to gauge/ gravity dualities with N=1 supersymmetry. In particular, we describe the gauge/gravity dualities that emerge from placing D3-branes at the apex of the conifold. We consider first the conformal case, with discussions of chiral primary operators and wrapped D-branes. Next, we break the conformal symmetry by adding a stack of partially wrapped D5-branes to the system, changing the gauge group and introducing a logarithmic renormalization group flow. In the gravity dual, the effect of these wrapped D5-branes is to turn on the flux of 3-form field strengths. The associated RR 2-form potential breaks the U(1) R-symmetry to Z2MZ_{2M} and we study this phenomenon in detail. This extra flux also leads to deformation of the cone near the apex, which describes the chiral symmetry breaking and confinement in the dual gauge theory.Comment: Based on I.R.K.'s lectures at the Les Houches Summer School Session 76, ``Gravity, Gauge Theories, and Strings'', August 2001, 42 pages, v2: clarifications and references adde

    Comments on orientifold projection in the conifold and SO x USp duality cascade

    Get PDF
    We study the O3-plane in the conifold. On the D3-brane world-volume we obtain SO x USp gauge theory that exhibits a duality cascade phenomenon. The orientifold projection is determined on the type IIB string side, and corresponds to that of O4-plane on the dual type IIA side. We show that SUGRA solutions of Klebanov-Tseytlin and Klebanov-Strassler survive under the projection. We also investigate the orientifold projection in the generalized conifolds, and verify desired features of the O4-projection in the type IIA picture.Comment: 1+27 pages, 9 figures, references added; version to appear in Phys. Rev.

    Geometric Transition versus Cascading Solution

    Get PDF
    We study Vafa's geometric transition and Klebanov - Strassler solution from various points of view in M-theory. In terms of brane configurations, we show the detailed equivalences between the two models. In some limits, both models have an alternative realization as fourfolds in M-theory with appropriate G-fluxes turned on. We discuss some aspects of the fourfolds including how to see the transition and a possible extension to the non-supersymmetric case.Comment: 34 pages, LaTex, 2 figures; v2: Some comments added and references updated. Final version to appear in JHE

    Constraints on DD Dimensional Warped Spaces

    Full text link
    In order to investigate the phenomenological implications of allowing gauge fields to propagate in warped spaces of more than five dimensions, we consider a toy model of a space warped by the presence of a anisotropic bulk cosmological constant. After solving the Einstein equation, three classes of solutions are found, those in which the additional (D>5D>5) dimensions are growing, shrinking or remaining constant. It is found that gauge fields propagating in these spaces have a significantly different Kaluza Klein (KK) mass spectrum and couplings from that of the Randall and Sundrum model. This leads to a greatly reduced lower bound on the KK scale, arising from electroweak constraints, for spaces growing towards the IR brane.Comment: 6 pages, 5 figures PASCOS2010 International Symposium proceedin

    Hierarchies from Fluxes in String Compactifications

    Get PDF
    Warped compactifications with significant warping provide one of the few known mechanisms for naturally generating large hierarchies of physical scales. We demonstrate that this mechanism is realizable in string theory, and give examples involving orientifold compactifications of IIB string theory and F-theory compactifications on Calabi-Yau four-folds. In each case, the hierarchy of scales is fixed by a choice of RR and NS fluxes in the compact manifold. Our solutions involve compactifications of the Klebanov-Strassler gravity dual to a confining N=1 supersymmetric gauge theory,and the hierarchy reflects the small scale of chiral symmetry breaking in the dual gauge theory.Comment: 35 pages. v2: minor eqn. and reference change
    corecore