5 research outputs found

    Comments on F-maximization and R-symmetry in 3D SCFTs

    Full text link
    We report preliminary results on the recently proposed F-maximization principle in 3D SCFTs. We compute numerically in the large-N limit the free energy on the three-sphere of an N=2 Chern-Simons-Matter theory with a single adjoint chiral superfield which is known to exhibit a pattern of accidental symmetries associated to chiral superfields that hit the unitarity bound and become free. We observe that the F-maximization principle produces a U(1) R-symmetry consistent with previously obtained bounds but inconsistent with a postulated Seiberg-like duality. Potential modifications of the principle associated to the decoupling fields do not appear to be sufficient to account for the observed violations.Comment: 17 pages, 3 figures; v2 a reference has been added, a missing factor of 2 has been corrected in eq (3.3) and the numerical results have been accordingly updated. The new results do not show any obvious signs of violation of previously obtained bounds. A potential disagreement with a postulated Seiberg-like duality is note

    Determinant and Weyl anomaly of Dirac operator: a holographic derivation

    Get PDF
    We present a holographic formula relating functional determinants: the fermion determinant in the one-loop effective action of bulk spinors in an asymptotically locally AdS background, and the determinant of the two-point function of the dual operator at the conformal boundary. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk partition function to a subleading large-N contribution in the boundary partition function. We use this holographic picture to address questions in spectral theory and conformal geometry. As an instance, we compute the type-A Weyl anomaly and the determinant of the iterated Dirac operator on round spheres, express the latter in terms of Barnes' multiple gamma function and gain insight into a conjecture by B\"ar and Schopka.Comment: 11 pages; new comments and references added, typos correcte

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction

    Collective Dipole Model of AdS/CFT and Higher Spin Gravity

    Full text link
    We formulate a first quantized construction of the AdS_{d+1}/CFT_d correspondence using the bi-local representation of the free d-dimensional large N vector model. The earlier reconstruction of AdS_4 higher-spin gravity provides a scheme where the AdS spacetime (and higher-spin fields) are given by the composite bi-local fields. The underlying first quantized, world-sheet picture is extracted in the present work and generalized to any dimension. A higher-spin AdS particle model is shown to emerge from the collective bi-particle system of Minkowski particles through a canonical transformation. As such this construction provides a simple explicit mechanism of the AdS/CFT correspondence.Comment: 16 pages, no figures; v2: references added; v3: minor change
    corecore