119 research outputs found

    Tools and Approaches for Dissecting Protein Bacteriocin Import in Gram-Negative Bacteria

    Get PDF
    Bacteriocins of Gram-negative bacteria are typically multi-domain proteins that target and kill bacteria of the same or closely related species. There is increasing interest in protein bacteriocin import; from a fundamental perspective to understand how folded proteins are imported into bacteria and from an applications perspective as species-specific antibiotics to combat multidrug resistant bacteria. In order to translocate across the cell envelope and cause cell death, protein bacteriocins hijack nutrient uptake pathways. Their import is energized by parasitizing intermembrane protein complexes coupled to the proton motive force, which delivers a toxic domain into the cell. A plethora of genetic, structural, biochemical, and biophysical methods have been applied to find cell envelope components involved in bacteriocin import since their discovery almost a century ago. Here, we review the various approaches that now exist for investigating how protein bacteriocins translocate into Gram-negative bacteria and highlight areas of research that will need methodological innovations to fully understand this process. We also highlight recent studies demonstrating how bacteriocins can be used to probe organization and architecture of the Gram-negative cell envelope itself

    Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity

    Get PDF
    We report the transcriptional response of Escherichia coli MG1655 to damage induced by colicins E3 and E9, bacteriocins that kill cells through inactivation of the ribosome and degradation of chromosomal DNA, respectively. Colicin E9 strongly induced the LexA-regulated SOS response, while colicin E3 elicited a broad response that included the induction of cold shock genes, symptomatic of translational arrest. Colicin E3 also increased the transcription of cryptic prophage genes and other laterally acquired mobile elements. The transcriptional responses to both these toxins suggest mechanisms that may promote genetic diversity in E. coli populations, pointing to a more general role for colicins in adaptive bacterial physiology than has hitherto been realized

    Antibiotics and hexagonal order in the bacterial outer membrane

    Get PDF

    Flexibility in the receptor-binding domain of the enzymatic colicin E9 is required for toxicity against Escherichia coli cells

    Get PDF
    The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil Mull receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB

    Probing metal ion binding and conformational properties of the colicin E9 endonuclease by electrospray ionization time-of-flight mass spectrometry

    Get PDF
    Nano-electrospray ionization time-of-flight mass spectrometry (ESI-MS) was used to study the conformational consequences of metal ion binding to the colicin E9 endonuclease (E9 DNase) by taking advantage of the unique capability of ESI-MS to allow simultaneous assessment of conformational heterogeneity and metal ion binding. Alterations of charge state distributions on metal ion binding/release were correlated with spectral changes observed in far- and near-UV circular dichroism (CD) and intrinsic tryptophan fluorescence. In addition, hydrogen/deuterium (H/D) exchange experiments were used to probe structural integrity. The present study shows that ESI-MS is sensitive to changes of the thermodynamic stability of E9 DNase as a result of metal ion binding/release in a manner consistent with that deduced from proteolysis and calorimetric experiments. Interestingly, acid-induced release of the metal ion from the E9 DNase causes dramatic conformational instability associated with a loss of fixed tertiary structure, but secondary structure is retained. Furthermore, ESI-MS enabled the direct observation of the noncovalent protein complex of E9 DNase bound to its cognate immunity protein Im9 in the presence and absence of Zn2+. Gas-phase dissociation experiments of the deuterium-labeled binary and ternary complexes revealed that metal ion binding, not Im9, results in a dramatic exchange protection of E9 DNase in the complex. In addition, our metal ion binding studies and gas-phase dissociation experiments of the ternary E9 DNase-Zn2+-Im9 complex have provided further evidence that electrostatic interactions govern the gas phase ion stability

    Targeted killing of Pseudomonas aeruginosa by pyocin G occurs via the hemin transporter hur

    Get PDF
    Pseudomonas aeruginosa is a priority pathogen for the development of new antibiotics, particularly because multi-drug-resistant strains of this bacterium cause serious nosocomial infections and are the leading cause of death in cystic fibrosis patients. Pyocins, bacteriocins of P. aeruginosa, are potent and diverse protein antibiotics that are deployed during bacterial competition. Pyocins are produced by more than 90% of P. aeruginosa strains and may have utility as last resort antibiotics against this bacterium. In this study, we explore the antimicrobial activity of a newly discovered pyocin called pyocin G (PyoG). We demonstrate that PyoG has broad killing activity against a collection of clinical P. aeruginosa isolates and is active in a Galleria mellonella infection model. We go on to identify cell envelope proteins that are necessary for the import of PyoG and its killing activity. PyoG recognizes bacterial cells by binding to Hur, an outer-membrane TonB-dependent transporter. Both pyocin and Hur interact with TonB1, which in complex with ExbB-ExbD links the proton motive force generated across the inner membrane with energy-dependent pyocin translocation across the outer membrane. Inner-membrane translocation of PyoG is dependent on the conserved inner-membrane AAA+ ATPase/protease, FtsH. We also report a functional exploration of the PyoG receptor. We demonstrate that Hur can bind to hemin in vitro and that this interaction is blocked by PyoG, confirming the role of Hur in hemin acquisition

    How Bugs Kill Bugs: Progress and Challenges in Bacteriocin Research

    Get PDF
    Abstract A Biochemical Society Focused Meeting on bacteriocins was held at the University of Nottingham on 16-18 July 2012 to mark the retirement of Professor Richard James and honour a scientific career of more than 30 years devoted to an understanding of the biology of colicins, bacteriocins produced by Escherichia coli. This meeting was the third leg of a triumvirate of symposia that included meetings at theÃŽle de Bendor, France, in 1991 and the University of East Anglia, Norwich, U.K., in 1998, focused on bringing together leading experts in basic and applied bacteriocin research. The symposium which attracted 70 attendees consisted of 18 invited speakers and 22 selected oral communications spread over four themes: (i) Role of bacteriocins in bacterial ecology, (ii) Mode of action of bacteriocins, (ii) Mechanisms of bacteriocin import across the cell envelope, and (iv) Biotechnological and biomedical applications of bacteriocins. Speakers and poster presenters travelled from around the world, including the U.S.A., Japan, Asia and Europe, to showcase the latest developments in their scientific research

    The therapeutic potential of bacteriocins as protein antibiotics

    Get PDF
    The growing incidence of antibiotic-resistant Gram-negative bacterial infections poses a serious threat to public health. Molecules that have yet to be exploited as antibiotics are potent protein toxins called bacteriocins that are produced by Gram-negative bacteria during competition for ecological niches. This review discusses the state of the art regarding the use for therapeutic purposes of two types of Gram-negative bacteriocins: colicin-like bacteriocins (CLBs) and tailocins. In addition to in vitro data, the potency of eight identified CLBs or tailocins has been demonstrated in diverse animal models of infection with no adverse effects for the host. Although the characteristics of bacteriocins will need further study, results obtained thus far regarding their in vivo potency, immunogenicity and low levels of resistance are encouraging. This leads the way for the development of novel treatments using bacteriocins as protein antibiotics

    Genomic Profiling Reveals Distinct Routes To Complement Resistance in Klebsiella pneumoniae.

    Get PDF
    The serum complement system is a first line of defense against bacterial invaders. Resistance to killing by serum enhances the capacity of Klebsiella pneumoniae to cause infection, but it is an incompletely understood virulence trait. Identifying and characterizing the factors responsible for preventing activation of, and killing by, serum complement could inform new approaches to treatment of K. pneumoniae infections. Here, we used functional genomic profiling to define the genetic basis of complement resistance in four diverse serum-resistant K. pneumoniae strains (NTUH-K2044, B5055, ATCC 43816, and RH201207), and explored their recognition by key complement components. More than 90 genes contributed to resistance in one or more strains, but only three, rfaH, lpp, and arnD, were common to all four strains. Deletion of the antiterminator rfaH, which controls the expression of capsule and O side chains, resulted in dramatic complement resistance reductions in all strains. The murein lipoprotein gene lpp promoted capsule retention through a mechanism dependent on its C-terminal lysine residue; its deletion led to modest reductions in complement resistance. Binding experiments with the complement components C3b and C5b-9 showed that the underlying mechanism of evasion varied in the four strains: B5055 and NTUH-K2044 appeared to bypass recognition by complement entirely, while ATCC 43816 and RH201207 were able to resist killing despite being associated with substantial levels of C5b-9. All rfaH and lpp mutants bound C3b and C5b-9 in large quantities. Our findings show that, even among this small selection of isolates, K. pneumoniae adopts differing mechanisms and utilizes distinct gene sets to avoid complement attack

    Outer membrane translocation of pyocins via the copper regulated TonB-dependent transporter CrtA

    Get PDF
    Pseudomonas aeruginosa is a common cause of serious hospital-acquired infections, the leading proven cause of mortality in people with cystic fibrosis and is associated with high levels of antimicrobial resistance. Pyocins are narrow spectrum protein antibiotics produced by P. aeruginosa that kill strains of the same species and have the potential to be developed as therapeutics targeting multi-drug resistant isolates. We have identified two novel pyocins designated SX1 and SX2. Pyocin SX1 is a metal-dependent DNase while pyocin SX2 kills cells through inhibition of protein synthesis. Mapping the uptake pathways of SX1 and SX2 shows these pyocins utilize a combination of the common polysaccharide antigen (CPA) and a previously uncharacterized TonB-dependent transporter (TBDT) PA0434 to traverse the outer membrane. In addition, TonB1 and FtsH are required by both pyocins to energise their transport into cells and catalyse their translocation across the inner membrane, respectively. Expression of PA0434 was found to be specifically regulated by copper availability and we have designated PA0434 as Copper Responsive Transporter A, or CrtA. To our knowledge these are the first S-type pyocins described that utilize a TBDT that is not involved in iron uptake
    • …
    corecore