765 research outputs found

    Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C

    Get PDF
    We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron diffraction. The ordering vector is Q_A = (0.48,0,0) and the phase appears above a critical in-plane magnetic field of 0.9 T. The field was applied in order to test the assumption that the zero-field magnetic structure at Q_F = (0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity were destroyed. We present theoretical calculations which show that two effects are important: A suppression of the ferromagnetic component of the RKKY exchange interaction in the superconducting phase, and a reduction of the superconducting condensation energy due to the periodic modulation of the moments at the wave vector Q_A

    DIFFERENCES IN JUMPING PERFORMANCE OF CHILDREN FROM DIFFERENT SPORTS

    Get PDF
    The ability of high rate of force development is crucial in many high power sports. The aim of this study was to examine the possible differences in jumping skills of children participating in sports with different demands of leg strength, in order to investigate if specific training influenced different jump performances. 175 children from four different sports participated. The subjects performed squat jumps; counter movement jumps and drop jumps from 0.2 m and 0.4 m. The study showed that the nature of the sport has influence on the performance of drop jumping ability on children, though natural selection may also have an influence

    Reductive Transformations of Anthropogenic Chemicals in Natural and Technical Systems

    Get PDF
    Reductive transformation reactions of chemical pollutants (e.g., polyhalogenated hydrocarbons, aromatic azo and nitro compounds, chromium(VI) species) in the environment are important both from an ecotoxicological and from an environmental technology point of view. Using well-defined model reactors as well as more complex 'real world' systems, several groups at EAWAG are trying to unravel compound- and system-specific factors that control the reduction of a variety of anthropogenic chemicals under different conditions in the environment. The examples presented in this article include the reduction of nitroaromatic compounds under iron- and sulfate-reducing conditions, the reductive dehalogenation of chlorinated ethenes by cob(I)alamin and by a bacterium that uses such compounds as terminal electron acceptors, and the reduction of chromium(VI) by various reduced iron species. The link between microbial and abiotic (chemical) processes involved in reductive transformations of pollutants is emphasized. The major goal of this article is to illustrate the approaches taken to elucidate the mechanisms and kinetics of environmentally relevant reduction reactions of pollutants, and to discuss how the results of such studies can be used 1) to gain insight into what is actually happening in the environment, and 2) to develop methods for the treatment of chemical wastes or contaminated sites

    Riboflavin-Vancomycin Conjugate Enables Simultaneous Antibiotic Photo-Release and Photodynamic Killing against Resistant Gram-Positive Pathogens

    Get PDF
    Decades of antibiotic misuse have led to alarming levels of antimicrobial resistance, and the development of alternative diagnostic and therapeutic strategies to delineate and treat infections is a global priority. In particular, the nosocomial, multidrug-resistant "ESKAPE" pathogens such as Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus spp (VRE) urgently require alternative treatments. Here, we developed light-activated molecules based on the conjugation of the FDA-approved photosensitizer riboflavin to the Gram-positive specific ligand vancomycin to enable targeted antimicrobial photodynamic therapy. The riboflavin-vancomycin conjugate proved to be a potent and versatile antibacterial agent, enabling the rapid, light-mediated, killing of MRSA and VRE with no significant off-target effects. The attachment of riboflavin on vancomycin also led to an increase in antibiotic activity against S. aureus and VRE. Simultaneously, we evidenced for the first time that the flavin subunit undergoes an efficient photoinduced bond cleavage reaction to release vancomycin, thereby acting as a photoremovable protecting group with potential applications in drug delivery

    Investigative Pattern Detection Framework for Counterterrorism

    Full text link
    Law-enforcement investigations aimed at preventing attacks by violent extremists have become increasingly important for public safety. The problem is exacerbated by the massive data volumes that need to be scanned to identify complex behaviors of extremists and groups. Automated tools are required to extract information to respond queries from analysts, continually scan new information, integrate them with past events, and then alert about emerging threats. We address challenges in investigative pattern detection and develop an Investigative Pattern Detection Framework for Counterterrorism (INSPECT). The framework integrates numerous computing tools that include machine learning techniques to identify behavioral indicators and graph pattern matching techniques to detect risk profiles/groups. INSPECT also automates multiple tasks for large-scale mining of detailed forensic biographies, forming knowledge networks, and querying for behavioral indicators and radicalization trajectories. INSPECT targets human-in-the-loop mode of investigative search and has been validated and evaluated using an evolving dataset on domestic jihadism.Comment: 9 pages, 4 figure

    Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates

    Full text link
    The Mermin-Ho and Anderson-Toulouse coreless non-singular vortices are demonstrated to be thermodynamically stable in ferromagnetic spinor Bose-Einstein condensates with the hyperfine state F=1. The phase diagram is established in a plane of the rotation drive vs the total magnetization by comparing the energies for other competing non-axis-symmetric or singular vortices. Their stability is also checked by evaluating collective modes.Comment: 4 pages, 4 figure

    Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases

    Full text link
    Finite temperature Green's function technique is used to calculate the energies and damping rates of elementary excitations of the homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both in the density and spin channels. For this purpose the self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.Comment: 26 pages, 21 figures. Added 2 new figures, detailed discussio

    Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China

    Get PDF
    Quasicontinuous measurements of carbon monoxide (CO) recorded over three years at Mount Waliguan (WLG), a global baseline station in remote western China, were examined using back trajectory analysis. The data include a revision to correct the working reference scale to the WMO2000 scale and corrections for drift in the reference gases. Between July 2004 and June 2007, CO exhibited large fluctuations and the 5 %, 50 % and 95 %-percentiles of relevant CO mixing ratios were 102 ppb, 126 ppb and 194 ppb. Approximately 50 % of all observed data were selected as CO background data using a mathematical procedure of robust local regression, with the remainder affected by regional-scale pollution. The monthly mean background CO mixing ratios showed a minimum in summer and a maximum in late winter, although all seasons were affected by short-term enhancements that exceeded background levels. The CO data were compared to values observed at the high alpine research station at Jungfraujoch, Switzerland. Smaller seasonal amplitudes were observed at WLG compared to the Jungfraujoch due to lower winter and spring CO levels, however, episodic enhancements of polluted air were greater at WLG. The air parcels arriving at WLG came predominately from the west, except in summer when advection from the east and southeast prevailed. Transport from the east or southeast typically brought polluted air to the site, having passed over populated urban areas upwind. A large number of elevated CO mixing ratios could also be associated with advection from the northwest of WLG via the central Xinjiang Uygur Autonomous Region (XUAR) and the Ge'ermu urban area where growing industrial activities as well as crops residue burning provide sources of CO. Air masses passing over northwestern Gansu were associated with relatively high CO values suggesting an anthropogenic influence, which was likely due to anthropogenic emissions from northwestern China (based on back-trajectory and potential source contribution analysis and on the INTEX-B: intercontinental Chemical Transport Experiment-Phase B). Background conditions were observed most frequently in air parcels from remote Tibet west of WLG. The probability that air parcels pass over regions of clean or polluted regions was further identified using potential source contribution function (PSCF) analysis
    corecore