412 research outputs found

    Formation of atomic tritium clusters and condensates

    Get PDF
    We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure

    Double versus single high-dose melphalan 200 mg/m2 and autologous stem cell transplantation for multiple myeloma: a region-based study in 484 patients from the Nordic area

    Get PDF
    Autologous stem cell transplantation is still considered the standard of care in young patients with multiple myeloma (MM). This disease is the most common indication for high-dose therapy (HDT) supported by hematopoietic stem cell transplantation and much data support the benefit of this procedure. Results of randomized studies are in favor of tandem autologous transplantation although the effect on overall survival is unclear. Based on sequential registration trials in the Nordic area, we aimed to evaluate the outcome of conventional single or double HDT

    Mermin-Ho vortex in ferromagnetic spinor Bose-Einstein condensates

    Full text link
    The Mermin-Ho and Anderson-Toulouse coreless non-singular vortices are demonstrated to be thermodynamically stable in ferromagnetic spinor Bose-Einstein condensates with the hyperfine state F=1. The phase diagram is established in a plane of the rotation drive vs the total magnetization by comparing the energies for other competing non-axis-symmetric or singular vortices. Their stability is also checked by evaluating collective modes.Comment: 4 pages, 4 figure

    Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases

    Full text link
    Finite temperature Green's function technique is used to calculate the energies and damping rates of elementary excitations of the homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both in the density and spin channels. For this purpose the self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.Comment: 26 pages, 21 figures. Added 2 new figures, detailed discussio

    The Greater Cederberg-False Bay Large Igneous Province in South Africa : a southern node of widespread magmatism associated with South Atlantic rifting

    Get PDF
    Please read abstract in the article.The South African DSI-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis (DST-NRF CIMERA); the South African National Research Foundation (NRF); the Russian Science Foundation; a MegaGrant Award through the Russian Federation; the LIPs- Industry Consortium project was partially funded by the Consortium with matching funds from Canadian NSERC.https://pubs.geoscienceworld.org/sajghj2024GeologyNon

    Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate

    Full text link
    A central goal in condensed matter and modern atomic physics is the exploration of many-body quantum phases and the universal characteristics of quantum phase transitions in so far as they differ from those established for thermal phase transitions. Compared with condensed-matter systems, atomic gases are more precisely constructed and also provide the unique opportunity to explore quantum dynamics far from equilibrium. Here we identify a second-order quantum phase transition in a gaseous spinor Bose-Einstein condensate, a quantum fluid in which superfluidity and magnetism, both associated with symmetry breaking, are simultaneously realized. 87^{87}Rb spinor condensates were rapidly quenched across this transition to a ferromagnetic state and probed using in-situ magnetization imaging to observe spontaneous symmetry breaking through the formation of spin textures, ferromagnetic domains and domain walls. The observation of topological defects produced by this symmetry breaking, identified as polar-core spin-vortices containing non-zero spin current but no net mass current, represents the first phase-sensitive in-situ detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure

    Magnetism in a lattice of spinor Bose condensates

    Full text link
    We study the ground state magnetic properties of ferromagnetic spinor Bose-Einstein condensates confined in a deep optical lattices. In the Mott insulator regime, the ``mini-condensates'' at each lattice site behave as mesoscopic spin magnets that can interact with neighboring sites through both the static magnetic dipolar interaction and the light-induced dipolar interaction. We show that such an array of spin magnets can undergo a ferromagnetic or anti-ferromagnetic phase transition under the magnetic dipolar interaction depending on the dimension of the confining optical lattice. The ground-state spin configurations and related magnetic properties are investigated in detail

    Vortices in multicomponent Bose-Einstein condensates

    Full text link
    We review the topic of quantized vortices in multicomponent Bose-Einstein condensates of dilute atomic gases, with an emphasis on that in two-component condensates. First, we review the fundamental structure, stability and dynamics of a single vortex state in a slowly rotating two-component condensates. To understand recent experimental results, we use the coupled Gross-Pitaevskii equations and the generalized nonlinear sigma model. An axisymmetric vortex state, which was observed by the JILA group, can be regarded as a topologically trivial skyrmion in the pseudospin representation. The internal, coherent coupling between the two components breaks the axisymmetry of the vortex state, resulting in a stable vortex molecule (a meron pair). We also mention unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein condensate. Next, we discuss a rich variety of vortex states realized in rapidly rotating two-component Bose-Einstein condensates. We introduce a phase diagram with axes of rotation frequency and the intercomponent coupling strength. This phase diagram reveals unconventional vortex states such as a square lattice, a double-core lattice, vortex stripes and vortex sheets, all of which are in an experimentally accessible parameter regime. The coherent coupling leads to an effective attractive interaction between two components, providing not only a promising candidate to tune the intercomponent interaction to study the rich vortex phases but also a new regime to explore vortex states consisting of vortex molecules characterized by anisotropic vorticity. A recent experiment by the JILA group vindicated the formation of a square vortex lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International Journal of Modern Physics
    • …
    corecore