43 research outputs found

    11 262 keV 1+ state in 20Ne

    Get PDF
    The excitation energy of the lowest 1+, T=1 state in 20Ne, which is important for parity nonconservation studies, has been determined in a photon scattering experiment to be 11 262.3 ± 1.9 keV. Values for the gamma -ray branching of this level to the ground state and to the first 2+ level in 20Ne are 84 ± 5% and 16 ± 5%, respectively. NUCLEAR REACTIONS 20Ne( gamma , gamma ), E gamma <18 MeV, bremsstrahlung; measured E gamma , gamma branching. Ne natural targets

    16O( gamma ,p) 15N reaction with linearly polarized photons

    Get PDF
    The 16O ( gamma ,p0) reaction has been studied with linearly polarized bremsstrahlung photons in and below the giant E1 resonance. The parity of the absorbed radiation was determined from the observed azimuthal asymmetry of the emitted protons. Combined with unpolarized measurements the polarized results determine the proton decay amplitudes of the M1 resonance at Ex=16.2 MeV in 16O. The shape of the unpolarized 16O ( gamma ,p3) angular distribution in the giant E1 resonance was derived from the measured analyzing power. NUCLEAR REACTIONS 16O( gamma ,p), E=15-25 MeV; measured analyzing power theta =90° linearly polarized bremsstrahlung; 16O dipole levels deduced pi ; 16.2 MeV 1+ resonance deduced p0 decay amplitudes; 16O GEDR deduced p3 angular distribution

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Parity of bound dipole states in 208Pb

    Get PDF
    The parities of eleven J=1 levels in 208Pb were determined by nuclear resonance fluorescence scattering of linearly polarized photons. A new 1+ level at Ex=5.846 MeV with Gamma 02 / Gamma =1.2±0.4 eV was found. This level can probably be identified with the theoretically predicted isoscalar 1+ state in 208Pb. All other bound dipole states below 7 MeV with Gamma 02 / Gamma >1.5 eV have negative parity. The 1- assignment to the 4.842-MeV level is of special significance because of previous conflicting results about its parity

    Switching on the Lights for Gene Therapy

    Get PDF
    Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application

    Measurement of glucose consumption using [F- 18]fluorodeoxyglucose

    No full text
    The [F-18]fluorodeoxyglucose (FDG) method to measure glucose metabolism quantitatively in humans is reviewed. The assumptions and the mathematical formulation of the underlying autoradiographic Sokoloff model and its adaptation to positron emission tomography (PET) are described. Various implementations to estimate glucose consumption from measured tissue activity with PET are presented. The dependence on the "lumped constant" and on the accuracy of the input function is discussed. Recommendations for the practical application of different procedures for performing FDG studies are given
    corecore