126 research outputs found

    Bioinformatics prediction of overlapping frameshifted translation products in mammalian transcripts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exceptionally, a single nucleotide sequence can be translated <it>in vivo </it>in two different frames to yield distinct proteins. In the case of the G-protein alpha subunit XL-alpha-s transcript, a frameshifted open reading frame (ORF) in exon 1 is translated to yield a structurally distinct protein called Alex, which plays a role in platelet aggregation and neurological processes. We carried out a novel bioinformatics screen for other possible dual-frame translated sequences, based on comparative genomics.</p> <p>Results</p> <p>Our method searched human, mouse and rat transcripts in frames +1 and -1 for ORFs which are unusually well conserved at the amino acid level. We name these conserved frameshifted overlapping ORFs 'matreshkas' to reflect their nested character. Select findings of our analysis revealed that the G-protein coupled receptor GPR27 is entirely contained within a frame -1 matreshka, thrombopoietin contains a matreshka which spans ~70% of its length, platelet glycoprotein IIIa (ITGB3) contains a matreshka with the predicted characteristics of a secreted peptide hormone, while the potassium channel KCNK12 contains a matreshka spanning >400 amino acids.</p> <p>Conclusion</p> <p>Although the <it>in vivo </it>existence of translated matreshkas has not been experimentally verified, this genome-wide analysis provides strong evidence that substantial overlapping coding sequences exist in a number of human and rodent transcripts.</p

    Role of pH-sensing receptors in colitis

    Full text link
    Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD

    The proton-sensing receptors TDAG8 and GPR4 are differentially expressed in human and mouse oligodendrocytes: Exploring their role in neuroinflammation and multiple sclerosis

    Full text link
    Acidosis is one of the hallmarks of demyelinating central nervous system (CNS) lesions in multiple sclerosis (MS). The response to acidic pH is primarily mediated by a family of G protein-coupled proton-sensing receptors: OGR1, GPR4 and TDAG8. These receptors are inactive at alkaline pH, reaching maximal activation at acidic pH. Genome-wide association studies have identified a locus within the TDAG8 gene associated with several autoimmune diseases, including MS. Accordingly, we here found that expression of TDAG8, as opposed to GPR4 or OGR1, is upregulated in MS plaques. This led us to investigate the expression of TDAG8 in oligodendrocytes using mouse and human in vitro and in vivo models. We observed significant upregulation of TDAG8 in human MO3.13 oligodendrocytes during maturation and in response to acidic conditions. However, its deficiency did not impact normal myelination in the mouse CNS, and its expression remained unaltered under demyelinating conditions in mouse organotypic cerebellar slices. Notably, our data revealed no expression of TDAG8 in primary mouse oligodendrocyte progenitor cells (OPCs), in contrast to its expression in primary human OPCs. Our investigations have revealed substantial species differences in the expression of proton-sensing receptors in oligodendrocytes, highlighting the limitations of the employed experimental models in fully elucidating the role of TDAG8 in myelination and oligodendrocyte biology. Consequently, the study does not furnish robust evidence for the role of TDAG8 in such processes. Nonetheless, our findings tentatively point towards a potential association between TDAG8 and myelination processes in humans, hinting at a potential link between TDAG8 and the pathophysiology of MS and warrants further research

    OGR1 (GPR68) and TDAG8 (GPR65) Have Antagonistic Effects in Models of Colonic Inflammation

    Get PDF
    G-protein-coupled receptors (GPRs), including pro-inflammatory ovarian cancer GPR1 (OGR1/GPR68) and anti-inflammatory T cell death-associated gene 8 (TDAG8/GPR65), are involved in pH sensing and linked to inflammatory bowel disease (IBD). OGR1 and TDAG8 show opposite effects. To determine which effect is predominant or physiologically more relevant, we deleted both receptors in models of intestinal inflammation. Combined Ogr1 and Tdag8 deficiency was assessed in spontaneous and acute murine colitis models. Disease severity was assessed using clinical scores. Colon samples were analyzed using quantitative polymerase chain reaction (qPCR) and flow cytometry (FACS). In acute colitis, Ogr1-deficient mice showed significantly decreased clinical scores compared with wildtype (WT) mice, while Tdag8-deficient mice and double knockout (KO) mice presented similar scores to WT. In Il-10-spontaneous colitis, Ogr1-deficient mice presented significantly decreased, and Tdag8-deficient mice had increased inflammation. In the Il10/^{-/-} × Ogr1/^{-/-} × Tdag8/^{-/-} triple KO mice, inflammation was significantly decreased compared with Tdag8/^{-/-}. Absence of Ogr1 reduced pro-inflammatory cytokines in Tdag8-deficient mice. Tdag8/^{-/-} had significantly more IFNγ+^{+} T-lymphocytes and IL-23 T-helper cells in the colon compared with WT. The absence of OGR1 significantly alleviates the intestinal damage mediated by the lack of functional TDAG8. Both OGR1 and TDAG8 represent potential new targets for therapeutic intervention

    pH-Sensing G Protein-Coupled Receptor OGR1 (GPR68) Expression and Activation Increases in Intestinal Inflammation and Fibrosis

    Full text link
    Local extracellular acidification occurs at sites of inflammation. Proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1, also known as GPR68) responds to decreases in extracellular pH. Our previous studies show a role for OGR1 in the pathogenesis of mucosal inflammation, suggesting a link between tissue pH and immune responses. Additionally, pH-dependent signalling is associated with the progression of intestinal fibrosis. In this study, we aimed to investigate OGR1 expression and OGR1-mediated signalling in patients with inflammatory bowel disease (IBD). Our results show that OGR1 expression significantly increased in patients with IBD compared to non-IBD patients, as demonstrated by qPCR and immunohistochemistry (IHC). Paired samples from non-inflamed and inflamed intestinal areas of IBD patients showed stronger OGR1 IHC staining in inflamed mucosal segments compared to non-inflamed mucosa. IHC of human surgical samples revealed OGR1 expression in macrophages, granulocytes, endothelial cells, and fibroblasts. OGR1-dependent inositol phosphate (IP) production was significantly increased in CD14+ monocytes from IBD patients compared to healthy subjects. Primary human and murine fibroblasts exhibited OGR1-dependent IP formation, RhoA activation, F-actin, and stress fibre formation upon an acidic pH shift. OGR1 expression and signalling increases with IBD disease activity, suggesting an active role of OGR1 in the pathogenesis of IBD. Keywords: OGR1 (GPR68) expression and function; fibroblasts; fibrosis; inflammatory bowel disease; pH-sensing GPCR

    Signaling of Human Frizzled Receptors to the Mating Pathway in Yeast

    Get PDF
    Frizzled receptors have seven membrane-spanning helices and are considered as atypical G protein-coupled receptors (GPCRs). The mating response of the yeast Saccharomyces cerevisiae is mediated by a GPCR signaling system and this model organism has been used extensively in the past to study mammalian GPCR function. We show here that human Frizzled receptors (Fz1 and Fz2) can be properly targeted to the yeast plasma membrane, and that they stimulate the yeast mating pathway in the absence of added Wnt ligands, as evidenced by cell cycle arrest in G1 and reporter gene expression dependent on the mating pathway-activated FUS1 gene. Introducing intracellular portions of Frizzled receptors into the Ste2p backbone resulted in the generation of constitutively active receptor chimeras that retained mating factor responsiveness. Introducing intracellular portions of Ste2p into the Frizzled receptor backbone was found to strongly enhance mating pathway activation as compared to the native Frizzleds, likely by facilitating interaction with the yeast Gα protein Gpa1p. Furthermore, we show reversibility of the highly penetrant G1-phase arrests exerted by the receptor chimeras by deletion of the mating pathway effector FAR1. Our data demonstrate that Frizzled receptors can functionally replace mating factor receptors in yeast and offer an experimental system to study modulators of Frizzled receptors

    Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone)

    Get PDF
    AbstractBone morphogenetic proteins (BMPs) were discovered as potent bone-inducing molecules. Their effect on adipogenic differentiation is not well understood, both stimulation and inhibition of the process have been described. We show here that BMP-2 strongly stimulates adipogenic differentiation of murine 3T3-L1 preadipocytes if applied together with an agonist of peroxisome proliferator-activated receptor γ (PPARγ). On its own, BMP-2 (500 ng/ml) did not stimulate adipogenesis as quantified by flow cytometry with the lipophilic dye Nile Red. However, the protein strongly potentiated adipogenesis stimulated by the thiazolidinedione BRL 49653 as well as glycerol-3-phosphate dehydrogenase activity and induction of mRNAs for the adipogenic markers PPARγ and adipsin. We confirmed the synergistic action of BMP-2 and BRL 49653 with primary cultures of rat bone marrow stromal cells. Our data demonstrate that BMP-2 can act as a potent adipogenic agent if presented together with activators of PPARγ
    corecore