26 research outputs found

    Worldline algorithms for Casimir configurations

    Get PDF
    We present improved worldline numerical algorithms for high-precision calculations of Casimir interaction energies induced by scalar-field fluctuations with Dirichlet boundary conditions for various Casimir geometries. Significant reduction of numerical cost is gained by exploiting the symmetries of the worldline ensemble in combination with those of the configurations. This facilitates high-precision calculations on standard PCs or small clusters. We illustrate our strategies using the experimentally most relevant sphere-plate and cylinder-plate configuration. We compute Casimir curvature effects for a wide parameter range, revealing the tight validity bounds of the commonly used proximity force approximation (PFA). We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA. Revisiting the parallel-plate configuration, we find a mapping between the D-dimensional Casimir energy and properties of a random-chain polymer ensemble.Comment: 23 pages, 9 figure

    Worldline approach to Casimir effect and Gross-Neveu model

    Get PDF
    We employ worldline numerics to study Casimir effect and Gross-Neveu model. In this approach, the quantum fluctuations are mapped onto quantum mechanical path integrals, which are evaluated with Monte Carlo methods. For the Casimir effect, this allows the precise computation of the interaction energy for a Dirichlet scalar in Casimir geometries inaccessible to other methods. We study geometries involving curvature and edges, both are important for experiments and applications in nanotechnology, respectively. Significant reduction of numerical cost is gained by exploiting the symmetries of the worldline ensemble in combination with those of the configurations. Our results reveal the tight validity bounds of the commonly used proximity force approximation (PFA) and provide first insight into the effect of edges of finite plates on the Casimir force. In the Gross-Neveu model, we compute the trace over the fermion fluctuations using a worldline path integral, whose numerical evaluation is demonstrated for various configurations in the two dimensional model. We incorporate temperature and chemical potential in our formalism and perform first worldline numeric computations at finite values of these quantities. We thereby rediscover aspects of the established phase diagram. The methods employed can be extended to higher dimensions, to study the existence of a spatially inhomogeneous ground state beyond the two dimensional Gross-Neveu model

    Casimir effect for curved geometries: PFA validity limits

    Full text link
    We compute Casimir interaction energies for the sphere-plate and cylinder-plate configuration induced by scalar-field fluctuations with Dirichlet boundary conditions. Based on a high-precision calculation using worldline numerics, we quantitatively determine the validity bounds of the proximity force approximation (PFA) on which the comparison between all corresponding experiments and theory are based. We observe the quantitative failure of the PFA on the 1% level for a curvature parameter a/R > 0.00755. Even qualitatively, the PFA fails to predict reliably the correct sign of genuine Casimir curvature effects. We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA.Comment: 4 pages, 4 figure

    Air pollution deaths attributable to fossil fuels: observational and modelling study.

    Get PDF
    OBJECTIVES: To estimate all cause and cause specific deaths that are attributable to fossil fuel related air pollution and to assess potential health benefits from policies that replace fossil fuels with clean, renewable energy sources. DESIGN: Observational and modelling study. METHODS: An updated atmospheric composition model, a newly developed relative risk model, and satellite based data were used to determine exposure to ambient air pollution, estimate all cause and disease specific mortality, and attribute them to emission categories. DATA SOURCES: Data from the global burden of disease 2019 study, observational fine particulate matter and population data from National Aeronautics and Space Administration (NASA) satellites, and atmospheric chemistry, aerosol, and relative risk modelling for 2019. RESULTS: Globally, all cause excess deaths due to fine particulate and ozone air pollution are estimated at 8.34 million (95% confidence interval 5.63 to 11.19) deaths per year. Most (52%) of the mortality burden is related to cardiometabolic conditions, particularly ischaemic heart disease (30%). Stroke and chronic obstructive pulmonary disease both account for 16% of mortality burden. About 20% of all cause mortality is undefined, with arterial hypertension and neurodegenerative diseases possibly implicated. An estimated 5.13 million (3.63 to 6.32) excess deaths per year globally are attributable to ambient air pollution from fossil fuel use and therefore could potentially be avoided by phasing out fossil fuels. This figure corresponds to 82% of the maximum number of air pollution deaths that could be averted by controlling all anthropogenic emissions. Smaller reductions, rather than a complete phase-out, indicate that the responses are not strongly non-linear. Reductions in emission related to fossil fuels at all levels of air pollution can decrease the number of attributable deaths substantially. Estimates of avoidable excess deaths are markedly higher in this study than most previous studies for these reasons: the new relative risk model has implications for high income (largely fossil fuel intensive) countries and for low and middle income countries where the use of fossil fuels is increasing; this study accounts for all cause mortality in addition to disease specific mortality; and the large reduction in air pollution from a fossil fuel phase-out can greatly reduce exposure. CONCLUSION: Phasing out fossil fuels is deemed to be an effective intervention to improve health and save lives as part the United Nations' goal of climate neutrality by 2050. Ambient air pollution would no longer be a leading, environmental health risk factor if the use of fossil fuels were superseded by equitable access to clean sources of renewable energy

    Geothermal Casimir Phenomena

    Full text link
    We present first worldline analytical and numerical results for the nontrivial interplay between geometry and temperature dependencies of the Casimir effect. We show that the temperature dependence of the Casimir force can be significantly larger for open geometries (e.g., perpendicular plates) than for closed geometries (e.g., parallel plates). For surface separations in the experimentally relevant range, the thermal correction for the perpendicular-plates configuration exhibits a stronger parameter dependence and exceeds that for parallel plates by an order of magnitude at room temperature. This effect can be attributed to the fact that the fluctuation spectrum for closed geometries is gapped, inhibiting the thermal excitation of modes at low temperatures. By contrast, open geometries support a thermal excitation of the low-lying modes in the gapless spectrum already at low temperatures.Comment: 8 pages, 3 figures, contribution to QFEXT07 proceedings, v2: discussion switched from Casimir energy to Casimir force, new analytical results included, matches JPhysA versio

    Global and national assessment of the incidence of asthma in children and adolescents from major sources of ambient NO<sub>2</sub>

    Get PDF
    Abstract Pediatric asthma incidence has been associated with exposure to nitrogen dioxide (NO2) in ambient air. NO2 is predominantly emitted through fossil fuel use in land transportation, power generation and the burning of solid biofuels in households. We simulated NO2 with a global atmospheric chemistry model, combined with a land use regression model, to estimate NO2 exposure in all countries worldwide. The global asthma incidence among children and adolescents attributable to NO2 was estimated by deriving an exposure-response function from a meta-analysis which included epidemiological studies from multiple countries, baseline incidence rates from the Global Burden of Disease and gridded population data. The sectoral contribution to pediatric asthma from NO2 exposure (NO2-related asthma incidence: NINC) was estimated for different source categories to provide guidance to mitigation policies. We estimate 3.52 (2.1�6.0) million NINC per year globally, being about 14% of the total asthma incidence cases among children and adolescents. We find that emissions from land transportation are the leading contributor to NINC globally (?44%), followed by the domestic burning of solid fuels (?10.3%) and power generation from fossil fuels (?8.7%). Biogenic emissions which are not anthropogenically induced may contribute ?14% to the total NINC. Our results show large regional differences in source contributions, as the domestic burning of solid fuels is a main contributor to NINC in India and Nepal (?25%), while emissions from shipping are the leading source in Scandinavian countries (?40%), for example. While only 5% of all children and adolescents live in areas where NO2 exceeds the WHO annual guideline of 21.25 ppb (40 ?g m?3) for NO2, about 90% of the NINC is found in regions that meet the WHO guideline, related to the uneven distribution of children and adolescents in the population. This suggests the need for stricter policies to reduce NO2 exposure, and revisiting the current WHO guideline to reduce the health risks of children and adolescents.</jats:p

    Worldline Monte Carlo for fermion models at large N_f

    Full text link
    Strongly-coupled fermionic systems can support a variety of low-energy phenomena, giving rise to collective condensation, symmetry breaking and a rich phase structure. We explore the potential of worldline Monte Carlo methods for analyzing the effective action of fermionic systems at large flavor number N_f, using the Gross-Neveu model as an example. Since the worldline Monte Carlo approach does not require a discretized spacetime, fermion doubling problems are absent, and chiral symmetry can manifestly be maintained. As a particular advantage, fluctuations in general inhomogeneous condensates can conveniently be dealt with analytically or numerically, while the renormalization can always be uniquely performed analytically. We also critically examine the limitations of a straightforward implementation of the algorithms, identifying potential convergence problems in the presence of fermionic zero modes as well as in the high-density region.Comment: 40 pages, 13 figure

    Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data

    Get PDF
    This paper presents decadal simulations of stratospheric and tropospheric aerosol and its radiative effects by the chemistry general circulation model EMAC constrained with satellite observations in the framework of the ESA Aerosol CCI project such as GOMOS (Global Ozone Monitoring by Occultation of Stars) and (A)ATSR ((Advanced) Along Track Scanning Radiometer) on the ENVISAT (European Environmental Satellite), IASI (Infrared Atmospheric Sounding Interferometer) on MetOp (Meteorological Operational Satellite), and, additionally, OSIRIS (Optical Spectrograph and InfraRed Imaging System). In contrast to most other studies, the extinctions and optical depths from the model are compared to the observations at the original wavelengths of the satellite instruments covering the range from the UV (ultraviolet) to terrestrial IR (infrared). This avoids conversion artifacts and provides additional constraints for model aerosol and interpretation of the observations. MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) SO2 limb measurements are used to identify plumes of more than 200 volcanic eruptions. These three-dimensional SO2 plumes are added to the model SO2 at the eruption times. The interannual variability in aerosol extinction in the lower stratosphere, and of stratospheric aerosol radiative forcing at the tropopause, is dominated by the volcanoes. To explain the seasonal cycle of the GOMOS and OSIRIS observations, desert dust simulated by a new approach and transported to the lowermost stratosphere by the Asian summer monsoon and tropical convection turns out to be essential. This also applies to the radiative heating by aerosol in the lowermost stratosphere. The existence of wet dust aerosol in the lowermost stratosphere is indicated by the patterns of the wavelength dependence of extinction in observations and simulations. Additional comparison with (A)ATSR total aerosol optical depth at different wavelengths and IASI dust optical depth demonstrates that the model is able to represent stratospheric as well as tropospheric aerosol consistently.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore