38 research outputs found

    A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of<br> Automata

    Full text link
    Model checking properties are often described by means of finite automata. Any particular such automaton divides the set of infinite trees into finitely many classes, according to which state has an infinite run. Building the full type hierarchy upon this interpretation of the base type gives a finite semantics for simply-typed lambda-trees. A calculus based on this semantics is proven sound and complete. In particular, for regular infinite lambda-trees it is decidable whether a given automaton has a run or not. As regular lambda-trees are precisely recursion schemes, this decidability result holds for arbitrary recursion schemes of arbitrary level, without any syntactical restriction.Comment: 23 page

    An Elementary Fragment of Second-Order Lambda Calculus

    Full text link
    A fragment of second-order lambda calculus (System F) is defined that characterizes the elementary recursive functions. Type quantification is restricted to be non-interleaved and stratified, i.e., the types are assigned levels, and a quantified variable can only be instantiated by a type of smaller level, with a slightly liberalized treatment of the level zero.Comment: 16 pages; correction

    IO vs OI in Higher-Order Recursion Schemes

    Get PDF
    We propose a study of the modes of derivation of higher-order recursion schemes, proving that value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those obtained using unrestricted derivations. Given that higher-order recursion schemes can be used as a model of functional programs, innermost-outermost derivations policy represents a theoretical view point of call by value evaluation strategy.Comment: In Proceedings FICS 2012, arXiv:1202.317

    A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of Automata

    No full text
    Model checking properties are often described by means of finite automata. Any particular such automaton divides the set of infinite trees into finitely many classes, according to which state has an infinite run. Building the full type hierarchy upon this interpretation of the base type gives a finite semantics for simply-typed lambda-trees. A calculus based on this semantics is proven sound and complete. In particular, for regular infinite lambda-trees it is decidable whether a given automaton has a run or not. As regular lambda-trees are precisely recursion schemes, this decidability result holds for arbitrary recursion schemes of arbitrary level, without any syntactical restriction

    A finite semantics for simply-typed lambda terms for infinite runs of automata. preprint

    No full text
    Abstract. Model checking properties are often described by means of finite automata. Any particular such automaton divides the set of infinite trees into finitely many classes, according to which state has an infinite run. Building the full type hierarchy upon this interpretation of the base type gives a finite semantics for simply-typed lambda-trees. A calculus based on this semantics is proven sound and complete. In particular, for regular infinite lambda-trees it is decidable whether a given automaton has a run or not. As regular lambda-trees are precisely recursion schemes, this decidability result holds for arbitrary recursion schemes of arbitrary level, without any syntactical restriction. This partially solves an open problem of Knapik, Niwinski and Urzyczyn. 1 Introduction and Related Work The lambda calculus has long been used as a model of computation. Restricting it to simple types allows for a particularly simple set-theoretic semantics. The drawback, however, is that only few functions can be defined in the simply-typed lambda calculus
    corecore