
IO vs OI in Higher-Order Recursion Schemes

Axel Haddad

To cite this version:

Axel Haddad. IO vs OI in Higher-Order Recursion Schemes. Workshop on Fixed Points
in Computer Science, Mar 2012, Tallinn, Estonia. pp.23-30, 2012, <10.4204/EPTCS.77.4>.
<hal-00865681>

HAL Id: hal-00865681

https://hal.archives-ouvertes.fr/hal-00865681

Submitted on 24 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48328108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00865681

Submitted to:
FICS 2012

c© A. Haddad

IO vs OI in Higher-Order Recursion Schemes

Axel Haddad
LIAFA (Université Paris 7 & CNRS) & LIGM (Université Paris Est & CNRS)

We propose a study of the modes of derivation of higher-order recursion schemes, proving that
value trees obtained from schemes using innermost-outermost derivations (IO) are the same as those
obtained using unrestricted derivations.

Given that higher-order recursion schemes can be used as a model of functional programs,
innermost-outermost derivations policy represents a theoretical view point of call by value evaluation
strategy.

1 Introduction

Recursion schemes have been first considered as a model of computation, representing the syntactical
aspect of a recursive program [15, 2, 3, 4] . At first, (order-1) schemes were modelling simple recursive
programs whose functions only take values as input (and not functions). Since, higher-order versions of
recursion schemes [11, 5, 6, 7, 8, 9] have been studied.

More recently, recursion schemes were studied as generators of infinite ranked trees and the focus was
on deciding logical properties of those trees [12, 8, 10, 1, 13, 14].

As for programming languages, the question of the evaluation policy has been widely studied. Indeed,
different policies results in the different evaluation [8, 9, 7]. There are two main evaluations policy
for schemes: outermost-innermost derivations (OI) and inner-outermost IO derivations, respectively
corresponding to call by need and call by value in programming languages.

Standardization theorem for the lambda-calculus shows that for any scheme, outermost-innermost
derivations (OI) lead to the same tree as unrestricted derivation. However, this is not the case for IO
derivations. In this paper we prove that the situation is different for schemes. Indeed, we establish that
the trees produced using schemes with IO policy are the same as those produced using schemes with OI
policy. For a given a scheme of order n, we can use a simplified continuation passing style transformation,
to get a new scheme of order n+ 1 in which IO derivations will be the same as OI derivations in the
initial scheme (Section 3). Conversely, in order to turn a scheme into another one in which unrestricted
derivations lead to the same tree as IO derivations in the initial scheme, we adapt Kobayashi’s [13] recent
results on HORS model-checking, to compute some key properties over terms (Section 4.1). Then we
embed these properties into a scheme turning it into a self-correcting scheme of the same order of the
initial scheme, in which OI and IO derivations produce the same tree (Section 4.2).

2 Preliminaries

Types are defined by the grammar τ ::= o | τ → τ; o is called the ground type. Considering that→ is
associative to the right (i.e. τ1 → (τ2 → τ3) can be written τ1 → τ2 → τ3), any type τ can be written
uniquely as τ1→ ...→ τk→ o. The integer k is called the arity of τ . We define the order of a type by
order(o) = 0 and order(τ1→ τ2) = max(order(τ1)+1,order(τ2)). For instance o→ o→ o→ o is a type

2 IO vs OI in Higher-Order Recursion Schemes

of order 1 and arity 3, (o→ o)→ (o→ o), that can also be written (o→ o)→ o→ o is a type of order 2.
Let τ`→ τ ′ be a shortcut for τ → ...→ τ︸ ︷︷ ︸

` times

→ τ ′.

Let Γ be a finite set of symbols such that to each symbol is associated a type. Let Γτ denote the set of
symbols of type τ . For all type τ , we define the set of terms of type T τ(Γ) as the smallest set satisfying:
Γτ ⊆ T τ(Γ) and

⋃
τ ′{t s | t ∈ T τ ′→τ(Γ),s ∈ T τ ′(Γ)} ⊆ T τ(Γ). If a term t is in T τ(Γ), we say that t

has type τ . We shall write T (Γ) as the set of terms of any type, and t : τ if t has type τ . The arity of a
term t, arity(t), is the arity of its type. Remark that any term t can be uniquely written as t = α t1...tk with
α ∈ Γ. We say that α is the head of the term t. For instance, let Γ = {F : (o→ o)→ o→ o , G : o→
o→ o , H : (o→ o) , a : o}: F H and G a are terms of type o→ o; F(G a) (H (H a)) is a term of type
o; F a is not a term since F is expecting a first argument of type o→ o while a has type o.

Let t : τ , t ′ : τ ′ be two terms, x : τ ′ be a symbol of type τ ′, then we write t[x 7→t ′] : τ the term obtained
by substituting all occurences of x by t ′ in the term t. A τ-context is a term C[•τ] ∈ T (Γ]{•τ : τ})
containing exactly one occurrence of •τ ; it can be seen as an application turning a term into another, such
that for all t : τ , C[t] =C[•τ][•τ 7→t]. In general we will only talk about ground type context where τ = o
and we will omit to specify the type when it is clear. For instance, if C[•] = F • (H (H a)) and t ′ = G a
then C[t ′] = F (G a) (H (H a)).

Let Σ be a set of symbols of order at most 1 (i.e. each symbols has type o or o→ ...→ o) and ⊥ : o
be a fresh symbol. A tree t over Σ]⊥ is a mapping t : domt → Σ]⊥, where domt is a prefix-closed
subset of {1, ...,m}∗ such that if u ∈ domt and t(u) = a then { j | u j ∈ domt} = {1, ...,arity(a)}. Note
that there is a direct bijection between ground terms of T o(Σ]⊥) and finite trees . Hence we will freely
allow ourselves to treat ground terms over Σ]⊥ as trees. We define the partial order v over trees as
the smallest relation satisfying ⊥ v t and t v t for any tree t, and a t1...tk v a t ′1...t

′
k iff ti v t ′i . Given a

(possibly infinite) sequence of trees t0, t1, t2, ... such that ti v ti+1 for all i, one can prove that the set of all
ti has a supremum that is called the limit tree of the sequence.

A higher order recursion scheme (HORS) G = 〈V ,Σ,N ,R,S〉 is a tuple such that: V is a finite
set of typed symbols called variables; Σ is a finite set of typed symbols of order at most 1, called
the set of terminals; N is a finite set of typed symbols called set of non-terminals; R is a set of
rewrite rules, one per non terminal F : τ1 → ...→ τk → o ∈ N , of the form F x1 ... xk → e with
e : o ∈T (Σ]N]{x1, ...,xk}); S ∈N is the initial non-terminal.

We define the rewriting relation→G ∈ T (Σ]N)2 (or just→ when G is clear) as t→G t ′ iff there
exists a context C[•], a rewrite rule F x1...xk→ e, and a term F t1 ... tk : o such that t =C[F t1...tk] and
t ′ =C[e[x1 7→t1]...[xk 7→tk]]. We call F t1 ... tk : o a redex. Finally we define→∗G as the reflexive and transitive
closure of→G.

We define inductively the⊥-transformation (·)⊥ : T o(N]Σ)→T o(Σ]{⊥ : o}): (F t1 ... tk)⊥ =
⊥ ∀F ∈N and (a t1 ... tk)⊥ = a t⊥1 ...t⊥k for all a ∈ Σ. We define a derivation, as a possibly infinite
sequence of terms linked by the rewrite relation. Let t0 = S→G t1→G t2→G ... be a derivation, then one
can check that (t0)⊥ v (t1)⊥ v (t2)⊥ v ..., hence it admits a limit. One can prove that the set of all such
limit trees has a greatest element that we denote ‖G‖ and refer to as the value tree of G. Note that ‖G‖ is
the supremum of {t⊥ | S→∗ t}. Given a term t : o, we denote by Gt the scheme obtained by transforming
G such that it starts derivations with the term t, formally, Gt = 〈V ,Σ,N]{S′},R]{S′→ t},S′〉. One
can prove that if t→ t ′ then ‖Gt‖= ‖Gt ′‖.

Example. Let G= 〈V ,Σ,N ,R,S〉 be the scheme such that: V = {x : o,φ : o→ o,ψ : (o→ o)→ o→ o},
Σ = {a : o3→ o,b : o→ o→ o,c : o}, N = {F :

(
(o→ o)→ o→ o

)
→ (o→ o)→ o→ o,H : (o→

A. Haddad 3

o)→ o→ o, I,J,K : o→ o,S : o}, and R contains the following rewrite rules:

F ψ φ x → ψ φ x I x → x H φ x → a (J x) (K x) (φ x)
J x → b (J x) (J x) K x → K (K x) S → F H I c

Here is an example of finite derivation:

S → F H I c → H I c → a (J c) (K c) (I c)

→ a (J c) (K (K c)) (I c) → a (J c) (K (K (K c))) (I c)

If one extends it by always rewriting a redex of head K, its limit is the tree a ⊥ ⊥ ⊥, but this is not the
value tree of G. The value tree ‖G‖ is depicted below.

...

b

...

b

...

b

...

b

...

b

...

b

...

a

b

...

⊥ c

Evaluation Policies

We now put constraints on the derivations we allow. If there are no constraints, then we say that the
derivations are unrestricted and we let AccG = {t : o | S→∗ t} be the set of accessible terms using
unrestricted derivations. Given a rewriting t→ t ′ such that t =C[F s1 ... sk] and t ′ =C[e[∀ j x j 7→s j]] with
F x1...xk→ e∈R.

• We say that t → t ′ is an outermost-innermost (OI) rewriting (written t →OI t ′) there is no redex
containing the occurrence of • as a subterm of C[•].
• We say that t→ t ′ is an innermost-outermost (IO) rewriting (written t→IO t ′), if for all j there is

no redex as a subterm of s j.

Let AccG
OI = {t : o | S→∗OI t} be the set of accessible terms using OI derivations and AccG

IO = {t :
o | S→∗IO t} be the set of accessible terms using IO derivations. There exists a supremum of AccG

OI (resp.
AccG

IO) which is the maximum of the limit trees of OI derivations(resp. IO derivations). We write it
‖G‖OI (resp. ‖G‖IO). For all recursive scheme G, (AccG)⊥ = (AccG

OI)
⊥, in particular ‖G‖OI = ‖G‖. But

‖G‖IO v ‖G‖ and in general, the equality does not hold (see the example is the next section).

3 From OI to IO

Fix a recursion scheme G = 〈V ,Σ,N ,R,S〉. Our goal is to define another scheme G = 〈V ,Σ,N ,R, I〉
such that ‖G‖IO = ‖G‖. The idea is to add an extra argument (∆) to each non terminal, that will be
required to rewrite it (hence the types are changed). We feed this argument to the outermost non terminal,
and duplicate it to subterms only if the head of the term is a terminal. Hence all derivations will be
IO-derivations.

We define the (·) transformation over types by o = o→ o, and τ1→ τ2 = τ1→ τ2. In particular, if
τ = τ1→ ...→ τk→ o then τ = τ1→ ...→ τk→ o→ o. Note that for all τ , order(τ) = order(τ)+1.

4 IO vs OI in Higher-Order Recursion Schemes

For all x : τ ∈ V we define x : τ as a fresh variable. Let armax be the maximum arity of terminals, we
define η1, ...,ηaritymax : o→ o and δ : o as fresh variables, and we let V = {x : τ | x∈V }]{η1, ...,ηarmax}]
{δ : o}. Note that δ is the only variable of type o. For all a : τ ∈ Σ define a : τ as a fresh non-terminal and
for all F : τ ∈N define F : τ as a fresh non-terminal. Let N = {a : τ | a ∈ Σ}]{F : τ | F ∈N }]{∆ :
o, I : o}. Note that I and ∆ are the only symbols in N of type o.

Let t : τ ∈ T (V]Σ]N), we define inductively the term t : τ ∈ T (V]N): If t = x ∈ V (resp.
t = a ∈ Σ, t = F ∈N), we let t = x ∈ V (resp. t = a ∈ Σ, t = F ∈N), if t = t1 t2 : τ then t = t1 t2.

Let F x1 ... xk → e be a rewrite rule of R. We define the (valid) rule F x1 ... xk δ → e ∆ in R.
Let a ∈ Σ of arity k, we define the rule a η1 ... ηk δ → a (η1 ∆) ... (ηk ∆) in R. We also add the rule
I → S ∆ to R. Finally let G = 〈V ,Σ,N ,R, I〉.
Example. Let G = 〈V ,Σ,N ,R,S〉 be the order-1 recursion scheme with Σ = {a,c : o}, N = {S : o,F :
o→ o→ o,H : o→ o}, V = {x,y : o}, and the following rewrite rules:

S → F (H a) c F x y → y H x → H (H x)

Then we have ‖G‖OI = c while ‖G‖IO = ⊥ (indeed, the only IO derivation is the following S →
F (Ha) c → F (H (H a)) c → F (H (H (H a))) c → ...). The order-2 recursion scheme G =
〈V ,Σ,N ,R, I〉 is given by N = {I,∆ : o,S,a,c : o→ o,F : (o→ o)→ (o→ o)→ o→ o,H : (o→
o)→ o→ o},V = {δ : o,x,y : o→ o} and the following rewrite rules:

I → S ∆ S δ → F (H a) c ∆ F x y δ → y ∆

H x δ → H (H x) ∆ c δ → c a δ → a

Note that in the term F (H a) c ∆, the subterm H a is no longer a redex since it lacks its last argument,
hence it cannot be rewritten, then the only IO derivation, which is the only unrestricted derivation is
I→ S ∆→ F (H a) c ∆→ c ∆→ c. Therefore ‖Ḡ‖IO = ‖Ḡ‖= c= ‖G‖.
Lemma 1. Any derivation of G is in fact an OI and an IO derivation. Hence that ‖G‖IO = ‖G‖.

Proof (Sketch). The main idea is that the only redexes will be those that have ∆ as last argument of the
head non-terminal. The scheme is constructed so that ∆ remains only on the outermost non-terminals, that
is why any derivation is an OI derivation. Furthermore, we have that if t = F t1...tk∆ is a redex, then none
of the ti contains ∆, therefore they do not contain any redex, hence t is an innermost redex.

Note that OI derivations in G acts like OI derivations in G, hence ‖G‖= ‖G‖.
Theorem 2 (OI vs IO). Let G be an order-n scheme. Then one can construct an order-(n+1) scheme G
such that ‖G‖= ‖G‖IO.

4 From IO to OI

The goal of this section is to transform the scheme G into a scheme G′′ such that ‖G′′‖ = ‖G‖IO. The
main difference between IO and OI derivations is that some redex would lead to ⊥ in IO derivation
while OI derivations could be more productive. For example take F : o→ o such that F x→ c, and H : o
such that H → a H, with a : o→ o and c : o being terminal symbols. The term F H has a unique OI
derivation, F H→OI c, it is finite and it leads to the value tree assiocated. On the other hand, the (unique)
IO derivation is the following F H→ F(a H)→ F (a (a H))→ ... which leads to the tree ⊥.

The idea of the transformation is to compute a tool (based on a type system) that decides if a redex
would produce ⊥ with IO derivations (Section 4.1); then we embed it into G and force any such redex to
produce ⊥ even with unrestricted derivations (Section 4.2).

A. Haddad 5

4.1 The Type System

Given a term t : τ ∈T (Σ]N), we define the two following properties on t: P⊥(t) =“The term t has
type o and its associated IO valuation tree is ⊥”, and P∞(t) =“the term t has not necessarily ground type,
it contains a redex r such that any IO derivation from r producing it’s IO valuation tree is infinite”. Note
that P∞(t) is equivalent to “the term t contains a redex r such that ‖Gr‖IO is either infinite or contains ⊥”.
In this section we describe a type system, inspired from the work of Kobayashi [13], that characterises if a
term verifies these properties.

Let Q be the set {q⊥,q∞}. Given a type τ , we define inductively the sets (τ)atom and (τ)∧ called
respectively set of atomic mappings and set of conjunctive mappings:
(o)atom = Q , (o)∧ = {

∧
{θ1, ...,θi} | θ1, ...,θi ∈ Q} , (τ1 → τ2)

atom = {q∞}] {(τ1)
∧ → (τ2)

atom}
(τ1→ τ2)

∧ = {
∧
{θ1, ...,θi} | θ1, ...,θi ∈ (τ1→ τ2)

atom}.
We will usually use the letter θ to represents atomic mappings, and the letter σ to represent conjunctive

mappings. Given a conjunctive mapping σ (resp. an atomic mapping θ) and a type τ , we write σ :: τ

(resp. θ ::a τ) the relation σ ∈ (τ)∧ (resp. θ ∈ (τ)atom). For the sake of simplicity, we identify the atomic
mapping θ with the conjunctive mapping

∧
{θ}.

Given a term t and a conjunctive mapping σ , we define a judgment as a tuple Θ ` t .σ , pronounce
“from the environment Θ, one can prove that t matches the conjunctive mapping σ”, where the environment
Θ is a partial mapping from V]N to conjunctive mapping. Given an environment Θ, α ∈ V]N and
a conjunctive mapping σ , we define the environment Θ′ = Θ,α .σ as Dom(Θ′) = Dom(Θ)∪{α} and
Θ′(α) = σ if α 6∈ Dom(Θ), Θ′(α) = σ ∧Θ(α) otherwise, and Θ′(β) = Θ(β) if β 6= α .

We define the following judgement rules:

Θ ` t .θ1 ... Θ ` t .θn

Θ ` t .
∧
{θ1, ...,θn}

(Set)
Θ,α .

∧
{θ1, ...,θn} ` α .θi

(At) (for all i)

Θ ` a.σ1→ ...→ σi≤arity(a)→ q∞

(Σ) (for a ∈ Σ and ∃ j σ j = q∞)

Θ ` t1 .σ → θ Θ ` t2 .σ

Θ ` t1 t2 .θ
(App)

Θ ` t .q∞→ q∞

(q∞→ q∞ I) (if t : τ1→ τ2)
Θ ` t1 .q∞

Θ ` t1 t2 .q∞

(q∞ I)

Remark that there is no rules that directly involves q⊥, but it does not mean that no term matches q⊥,
since it can appear in Θ. Rules like (At) or (App) may be used to state that a term matches q⊥.

We say that (G, t) matches the conjunctive mapping σ written ` (G, t).σ if there exists an environment
Θ, called a witness environment of ` (G, t).σ , such that (1) Dom(Θ) = N , (2) ∀F : τ ∈N Θ(F) :: τ ,
(3) if F x1...xk→ e∈R and Θ ` F .σ1→ ...→ σi≤k→ q then either there exists j such that q∞ ∈ σ j, or
i = k and Θ,x1 .σ1, ...,xk .σk ` e.q, (4) Θ ` t .σ .

The following two results state that this type system matches the properties P⊥ and P∞ and further-
more we can construct a universal environment, Θ?, that can correctly judge any term.

Theorem 3 (Soundness and Completeness). Let G be an HORS, and t be term (of any type), ` (G, t).q∞

(resp. ` (G, t).q⊥) if and only if P∞(t) (resp. P⊥(t)) holds.

Proposition 4 (Universal Witness). There exists an environment Θ? such that for all term t, the judgment
` (G, t).σ holds if and only if Θ? ` t .σ .

6 IO vs OI in Higher-Order Recursion Schemes

Proof (Sketch). To compute Θ?, we start with an environment Θ0 satisfying Properties (1) and (2)
(Dom(Θ0) = N and ∀F : τ ∈N Θ0(F) :: τ) that is able to judge any term t : τ with any conjunctive
mapping σ :: τ .

Then let F be the mapping from the set of environments to itself, such that for all F : τ1→ ...→
τk→ o ∈N , if F x1...xk→ e∈R then,

F (Θ)(F) = {σ1→ ...→ σk→ q | q ∈ Q∧∀i σi :: τi∧Θ,x1 .σ1, ...,xk .σk ` e : q}
∪{σ1→ ...→ σi≤k→ q∞ | ∧∀i σi :: τi∧∃ j q∞ ∈ σ j}

∪{σ1→ ...→ σk→ q⊥ | ∀i σi :: τi∧∃ j q∞ ∈ σ j}.

We iterate F until we reach a fixpoint. The environment we get is Θ?, it verifies properties (1) (2)
and (3). Furthermore we can show that this is the maximum of all environment satisfying these properties,
i.e. if ` (G, t).σ then Θ? ` t .σ .

4.2 Self-Correcting Scheme

For all term t : τ ∈T (Σ]N), we define JtK ∈ (τ)∧, called the semantics of t, as the conjunction of all
atomic mappings θ such that Θ? ` t .θ (recall that Θ? is the environment of Proposition 4). In particular
P⊥(t) (resp. P∞(t)) holds if and only if q⊥ ∈ JtK (resp. q∞ ∈ JtK). Given two terms t1 : τ2→ τ and t2 : τ2
the only rules we can apply to judge Θ? ` t1 t2 .θ are (App), (q∞→ q∞ I) and (q∞ I). We see that θ only
depends on which atomic mappings are matched by t1 and t2. In other words Jt1 t2K only depends on Jt1K
and Jt2K, we write Jt1K Jt2K = Jt1 t2K.

In this section, given a scheme G = 〈V ,Σ,N ,R,S〉, we transform it into G′ = 〈V ′,Σ,N ′,R ′,S〉
which is basically the same scheme except that while it is producing an IO derivation, it evaluates Jt ′K for
any subterm t ′ of the current term and label t ′ with Jt ′K. Note that if t→IO t ′, then JtK = Jt ′K. Since we
cannot syntactically label terms, we will label all symbols by the semantics of their arguments, e.g. if we
want to label F t1...tk, we will label F with the k-tuple (Jt1K, ...,JtkK).

A problem may appear if some of the arguments are not fully applied, for example imagine we want
to label F H with H : o→ o. We will label F with JHK, but since H has no argument we do not know
how to label it. The problem is that we cannot wait to label it because once a non-terminal is created, the
derivation does not deal explicitly with it. The solution is to create one copy of H per possible semantics
for its argument (here there are four of them:

∧
{},
∧
{q⊥},

∧
{q∞},

∧
{q⊥,q∞}). This means that FJHK

would not have the same type as F: F has type (o→ o)→ o, but FJGK will have type (o→ o)4 → o.
Hence, F H will be labelled the following way: FJHK H

∧
{}H

∧
{q⊥}H

∧
{q∞}H

∧
{q⊥,q∞}. Note that even if F

has 4 arguments, it only has to be labelled with one semantics since all four arguments represent different
labelling of the same term. We now formalize these notions.

Let us generalize the notion of semantics to deals with terms containing some variables. Given an
environment on the variables ΘV such that Dom(ΘV)⊆ V and if x : τ then ΘV (x) :: τ , and given a term
t : τ ∈T (Σ]N]Dom(ΘV)), we define JtKΘV ∈ (τ)∧, as the conjunction of all atomic mappings θ such
that Θ?,ΘV ` t .θ . Given two terms t1 : τ2→ τ and t2 : τ2 we still have that Jt1 t2KΘV only depends on
Jt1KΘV and Jt2KΘV .

To a type τ = τ1→ ...→ τk→ o we associate the integer dτe=Card({(σ1, ...,σk) | ∀i σi ∈ (τi)
∧})

and a complete ordering of {(σ1, ...,σk) | ∀i σi ∈ (τi)
∧} denoted ~σ τ

1 , ~σ τ
2 , ... , ~σ τ

dτe. We define inductively

the type τ+ = (τ+
1)dτ1e→ ...→ (τ+

k)dτke→ o.

A. Haddad 7

To a non terminal F : τ1 → ... → τk → o (resp. a variable x : τ1 → ... → τk → o) and a tuple
σ1 :: τ1, ...,σk :: τk, we associate the non-terminal Fσ1,...,σk : τ

dτ1e
1 → ...→ τ

dτke
k → o ∈ N ′ (resp. a

variable xσ1,...,σk : τ
dτ1e
1 → ...→ τ

dτke
k → o ∈ V ′).

Given a term t : τ = τ1→ ...→ τk→ o ∈ T (V]Σ]N) and an environment on the variables ΘV

such that Dom(ΘV) ⊆ V contains all variables in t, we define inductively the term t+σ1,...,σk
ΘV : τ+ ∈

T (V ′]Σ′]N ′) for all σ1 :: τ1, ...,σk :: τk. If t = F ∈N (resp. t = x ∈ V), t+σ1,...,σk
ΘV = Fσ1,...,σk (resp.

t+σ1,...,σk
ΘV = xσ1,...,σk), if t = a ∈ Σ, t+σ1,...,σk

ΘV = a. Finally consider the case where t = t1 t2 with t1 : τ ′→ τ

and t2 : τ ′. Let σ = Jt2KΘV . Remark that t1
+σ ,σ1,...,σk
ΘV : (τ ′+)dτ

′e → τ+. We define (t1 t2)
+σ1,...,σk
ΘV =

t1
+σ ,σ1,...,σk
ΘV t2

+~σ τ ′
1

ΘV ... t2
+~σ τ ′
dτ ′e

ΘV . Note that since this transformation is only duplicating and anotating, given a
term t+σ1,...,σk we can uniquely find the unique term t associated to it.

Let F : τ1→ ...→ τk→ o∈N , σ1 :: τ1, ...,σk :: τk, and ΘV = x1.σ1, ...,xk.σk . If F x1...xk → e∈R,

we define in R ′ the rule Fσ1,...,σk x+
~σ

τ1
1

1 ... x
+~σ

τ1
dτ1e

1 ... x+
~σ

τk
1

k ... x
+~σ

τk
dτke

k → e+
ΘV . Finally, recall that

G′ = 〈V ′,Σ,N ′,R ′,S〉.

The following theorem states that G′ is just a labeling version of G and that it acts the same.

Theorem 5 (Equivalence between G and G′). Given a term t : o, ‖G′t+‖IO = ‖Gt‖IO.

We transform G′ into the scheme G′′ that will directly turn into ⊥ a redex t such that q⊥ ∈ JtK.
For technical reason, instead of adding ⊥ we add a non terminal Void : o and a rule Void → Void.
G′ = 〈V ′,Σ,N ′]{Void : o},R ′′,S〉 such that R ′′ contains the rule Void→Void and for all F ∈N , if

q⊥ ∈ JFK σ1 ... σk then Fσ1,...,σk x+
~σ

τ1
1

1 ... x
+~σ

τ1
dτ1e

1 ... x+
~σ

τk
1

k ... x
+~σ

τk
dτke

k →Void otherwise we keep the rule of
R ′.

The following theorem concludes Section 4.

Theorem 6 (IO vs OI). Let G be a higher-order recursion scheme. Then one can construct a scheme G′′

having the same order of G such that ‖G′′‖= ‖G‖IO.

Proof (Sketch). First, given a term t : o, one can prove that ‖G′′t+‖IO = ‖G′t+‖IO.
Then take a redex t such that ‖G′′t ‖IO = ⊥, i.e. q⊥ ∈ JGtK. There is only one OI derivation from

t: t→Void→Void→ ..., then ‖G′′t ‖=⊥. We can extend this result saying that if there is the symbol
⊥ at node u in ‖G′′t ‖IO, then there is ⊥ at node u in ‖G′′t ‖. Hence, since ‖G′′t ‖IO v ‖G′′t ‖, we have
‖G′′‖= ‖G′′‖IO. Then ‖G′′‖= ‖G′′‖IO = ‖G′‖IO = ‖G‖IO.

5 Conclusion

We have shown that value trees obtained from schemes using innermost-outermost derivations (IO) are
the same as those obtained using unrestricted derivations. More precisely, given an order-n scheme G
we create an order-(n+1) scheme G such that ‖G‖IO = ‖G‖. However, the increase of the order seems
unavoidable. We also create an order-n scheme G′′ such that ‖G′′‖= ‖G‖IO. In this case the order does
not increase, however the size of the scheme deeply increases while it remains almost the same in G.

8 IO vs OI in Higher-Order Recursion Schemes

References
[1] Klaus Aehlig (2006): A Finite Semantics of Simply-Typed Lambda Terms for Infinite Runs of Automata. In:

"Proc. of Computer Science Logic, 20th Annual Conference of the EACSL", Lecture Notes in Comput. Sci.
4207, Springer-Verlag, pp. 104–118, doi:10.1007/11874683_7.

[2] Bruno Courcelle (1978): A Representation of Trees by Languages I. Theoret. Comput. Sci. 6, pp. 255–279,
doi:10.1016/0304-3975(78)90008-7.

[3] Bruno Courcelle (1978): A Representation of Trees by Languages II. Theoret. Comput. Sci. 7, pp. 25–55,
doi:10.1016/0304-3975(78)90039-7.

[4] Bruno Courcelle & Maurice Nivat (1978): The Algebraic Semantics of Recursive Program Schemes. In: Proc.
7th Symposium, Mathematical Foundations of Computer Science 1978, Lecture Notes in Comput. Sci. 64,
Springer-Verlag, pp. 16–30.

[5] Werner Damm (1977): Higher type program schemes and their tree languages. In: Theoretical Computer
Science, 3rd GI-Conference, Lecture Notes in Comput. Sci. 48, Springer-Verlag, pp. 51–72.

[6] Werner Damm (1977): Languages Defined by Higher Type Program Schemes. In: Proc. 4th Colloq. on
Automata, Languages, and Programming (ICALP), Lecture Notes in Comput. Sci. 52, Springer-Verlag, pp.
164–179.

[7] Werner Damm (1982): The IO- and OI-Hierarchies. Theoret. Comput. Sci. 20, pp. 95–207, doi:10.1016/0304-
3975(82)90009-3.

[8] Joost Engelfriet & Erik Meineche Schmidt (1977): IO and OI. I. J. Comput. System Sci. 15(3), pp. 328–353,
doi:10.1016/S0022-0000(77)80034-2.

[9] Joost Engelfriet & Erik Meineche Schmidt (1978): IO and OI. II. J. Comput. System Sci. 16(1), pp. 67–99,
doi:10.1016/0022-0000(78)90051-X.

[10] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong & Olivier Serre (2008): Collapsible Pushdown
Automata and Recursion Schemes. In: Proceedings of the 23rd Annual IEEE Symposium on Logic in
Computer Science (LICS), IEEE Computer Society, pp. 452–461.

[11] Klaus Indermark (1976): Schemes with Recursion on Higher Types. In: Proc. 5th Symposium, Mathematical
Foundations of Computer Science 1976, Lecture Notes in Comput. Sci. 45, Springer-Verlag, pp. 352–358.

[12] Teodor Knapik, Damian Niwiński & Pawel Urzyczyn (2002): Higher-Order Pushdown Trees Are Easy.
In: Proceedings of the 5th International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS), Lecture Notes in Comput. Sci. 2303, Springer-Verlag, pp. 205–222, doi:10.1007/3-540-
45931-6_15.

[13] Naoki Kobayashi (2009): Types and higher-order recursion schemes for verification of higher-order programs.
In: Proc. 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
ACM, pp. 416–428.

[14] Naoki Kobayashi & C.-H. Luke Ong (2009): A Type System Equivalent to the Modal Mu-Calculus Model
Checking of Higher-Order Recursion Schemes. In: Proceedings of the 24th Annual IEEE Symposium on
Logic in Computer Science (LICS), IEEE Computer Society, pp. 179–188.

[15] M. Nivat (1972): On the interpretation of recursive program schemes. In: Symposia Matematica.

http://dx.doi.org/10.1007/11874683_7
http://dx.doi.org/10.1016/0304-3975(78)90008-7
http://dx.doi.org/10.1016/0304-3975(78)90039-7
http://dx.doi.org/10.1016/0304-3975(82)90009-3
http://dx.doi.org/10.1016/0304-3975(82)90009-3
http://dx.doi.org/10.1016/S0022-0000(77)80034-2
http://dx.doi.org/10.1016/0022-0000(78)90051-X
http://dx.doi.org/10.1007/3-540-45931-6_15
http://dx.doi.org/10.1007/3-540-45931-6_15

9

Appendices
A From OI to IO

Complement of Definitions

A n holes context is a term C[•τ1
1 , ...,•τn

n] ∈T (Γ]{•τi
i : τi | 1≤ i≤ n}) containing exactly one occurrence

of •i for all i. (We will generally omit to write the type τi in the notation •τi
i).

For all i1, ..., ik ≤ n we are interested in the application

t1, ..., tk 7→
(
C[•1, ...,•n]

)
[∀ j≤k •i j 7→t j]

with t j ∈ Tτi j
(Γ) for all j. (notice that the order of the substitution is not important). One can con-

sider
(
C[•1, ...,•n]

)
[∀ j≤k •i j 7→t j]

as a n− k holes context. We may write C[•1]...[•n] to denote the con-

text C[•1, ...,•n] and extend this notation to
(
C[•1, ...,•n]

)
[∀ j≤k •i j 7→t j]

, for example, given the context

C[•1][•2][•3], we define C[t1][•2][t3] =
(
C[•1][•2][•3]

)
[•1 7→t1,•3 7→t3]

Given a one hole context C[•], we define inductively the head symbol sequence hss(C) which
is a finite sequence of symbols of Γ: if C[•] = •, then hss(C) is the empty sequence, if C[•] =
α t1, ..., ti−1C′[•]ti+1...tk, then hss(C) = α,hss(C′).

Proposition 7. Given a n holes context C[•1]...[•n], for all i, for all t1, ... , ti−1, ti+1, ... , tn and s1, ... ,
si−1, si+1, ... , sn:

hss(C[t1]...[ti−1][•][ti+1]...[tn]) = hss(C[s1]...[si−1][•][si+1]...[sn])

of Proposition 7. We prove this proposition by induction on the size of the context, for all n . If C[•i] = •i

is a 1 hole context, then the result is prooven. If C[•1]...[•n] = a t1...tn there exists exactly one k such that
tk contains one ocurrence of •i, if we look all the occurrences of some • j in tk, we can state that tk is a l
holes context C′[• j1]...[• jl]for some l. Moreover

hss(C[t1]...[ti−1][•][ti+1]...[tn]) = a,hss(C′[t j1]...[•i][t jl]) and

hss(C[s1]...[si−1][•][si+1]...[sn]) = a,hss(C′[s j1]...[•i][s jl])

Since hss(C′[t j1]...[•i][t jl]) = hss(C′[s j1]...[•i][s jl]) by hypothesis of induction, we have

hss(C[t1]...[ti−1][•][ti+1]...[tn]) = hss(C[s1]...[si−1][•][si+1]...[sn])

Proposition 8. Let t be a term, and let C1[•] and C2[•] be two contexts such that t =C1[t1] and t =C2[t2],
then: either there exists a context C′1 such that C2[•] =C1[C′1[•]] (1), Or there exists a context C′2 such
that C1[•] = C2[C′2[•]] (2), or there exists a two hole context C[•1][•2] such that C[t1][•] = C2[•] and
C[•][t2] =C1[•] (3).

of Proposition 8. We proceed by induction. If C1[•] = •, then C2[•] = C1[C2[•]], in the same way, if
C2[•] = •, C1[•] = C2[C1[•]]. Else C1[•] = a s1...si−1C′1[•]si+1...sk and C2[•] = a s1...s j−1C′2[•]s j+1...sk.
If i 6= j (we assume w.l.o.g. that i < j) we set C[•1][•2] = a s1...si−1C′1[•1]si+1...s j−1C′2[•2]s j+1...sk, we
have that C[t1][•] =C2 and C[•][t2] =C1[•]. If i = j, then C′1[t1] =C′2[t2], by induction:

10

• Either there exists a two hole context C′[•1][•2] such that C′[t1][•] = C′2[•] and C′[•][t2] = C′1[•],
in that case we set C[•1][•2] = a s1...si−1C′[•1][•2]si+1...sk, and we have C[t1][•] = C2[•] and
C[•][t2] =C1[•],
• Or there exists a context C′′1 such that C′2[•] =C′1[C

′′
1 [•]], in that case C2[•] =C1[C′′1 [•]].

• Or there exists a context C′′2 such that C′1[•] =C′2[C
′′
2 [•]], in that case C1[•] =C2[C′′2 [•]].

Correctness of the Transformation

We remark that t does not contain any occurrence of ∆, I or δ . We also remark that any subterms of t has
type τ for some type τ , hence it can not have ground type and in particular, it is not a redex. Moreover,
given two terms t1, t2, if the term t1 t2 is valid, then it is equal to t1 t2, in particular, it is an “overlined”
term. It follows by induction, that given three terms t, t1, t2, if the term t [t1 7→t2] is well defined, then it is
equal to t[t1 7→t2] wich is also well defined.

Proof of Lemma 1. First We need the following claim.

Claim 9. For all accessible term t (with unrestricted derivations), for all context C[•] such that t =C[red]
with red being a redex , hss(C) only contains terminals symbols. Furthermore, the term red doesn’t
contain occurence of any terminal symbol.

Proof of Claim 9. We prove it by induction. I satisfies Claim 9, S ∆ too. Assume that t = C[F t1...tk]
satisfies Claim 9, with k = arity(F) and F ∈N . If F x1...xk →G e∆ ∈ R, let t ′ = C[e[∀i xi 7→ti]∆]. Let
C′[•] a context and red = γ s1...sarity(γ) with γ ∈N a redex such that t ′ =C′[red].
First, we notice that since e[∀i xi 7→ti] ∆ is a ground type term only containing non-terminal symbols, it is a
redex , let ρ r1...rarity(ρ)−1 ∆ = e[∀i xi 7→ti] ∆.

Using Proposition 8 we now that there are four options:
1. either C[•] =C′[γ s1...si−1C′′[•]si+1...sarity(γ)] with C′′ a context,

2. or C′[•] =C[ρ r1...ri−1C′′[•]ri+1...rarity(ρ)−1∆] with C′′ a context,

3. or C′[•] =C[•],
4. or there exists a two holes context C[•1][•2] such that C[•] =C[•][red] and C′[•] =C[e[∀i xi 7→ti]∆][•].

Option 1 is impossible, otherwise γ would be an element of hss(C).
Option 2 would imply that e[∀i xi 7→ti] = ρ r1...ri−1C′′[red]ri+1...rarity(ρ)−1 then e[∀i xi 7→ti] contains a ground
typed term, which can’t be true, see Remark A.
If Option 3 is true. Then hss(C′) = hss(C) which by induction only contains terminal symbols. Since
there is no terminal symbols in e and in ti for all i, there is no terminal in e∆ = red. Hence t ′ satisfies
Claim 9.
If Option 4 is true, then t = C[F t1...tn][red]. Then by induction, hss(C[F t1...tn][•]) only contains
terminal symbols. But, using Proposition 7, we know that

hss(C′[•]) = hss(C[e[∀i xi 7→ti]∆][•]) = hss(C[F t1...tn][•]).

Then hss(C′[•]) only contains terminal symbols. Furthermore, since red is a subterm of t, by induction it
only contains non-terminal symbols, which proves that t ′ satisfies Claim 9.

Assume that t =C[a t1...tk] satisfies Claim 9 with a∈ Σ and k = arity(a), and let t ′ =C[a (t1∆)...(tk∆)].
We can prove that t ′ satisfies Claim 9 in a similar way).

11

Let t =C[red] an accessible term with red a redex , let exp be the rewrite expression of red, and let’s
look at the derivation t =C[red]→G t ′ =C[exp].

Claim 9 tells us that hss(C) only contains terminals, hence there is no redex containing an occurence
of • in C, hence the derivation is OI.Assume that red = γ t1...ti−1C′(t)ti+1...tarity(γ) with C′ a context and t
a term.

Then t = C[γ t1...ti−1C′(t)ti+1...tarity(γ)] then hss(C[γ t1...ti−1C′(•)ti+1...tarity(γ)]) contains a non ter-
minal symbol γ , hence Claim 9 tells that t is not a redex , so no non-trivial subterm of red is a redex , so
the derivation is IO.

Proof of Theorem 2. Lemma 1 shows that we only have to prove that ‖G‖OI = ‖G‖. Concretely we will
show that:

∀t ∈ AccG, ∃t ′ ∈ AccG : t⊥ v (t ′)⊥ (1)

∀t ′ ∈ AccG, ∃t ∈ AccG : (t ′)⊥ v t⊥ (2)

Definition 1 (‖·‖-transformation). We define inductively the transformation ‖·‖ : T o(Σ]N)→T o(Σ]
N) :

• ‖a t1...tarity(a)‖= a ‖t1‖...‖tarity(a)‖ for all a ∈ Σ,

• ‖red‖= red ∆ for red a redex .

Remark 1. Notice that t⊥ = (‖t‖)⊥.

Claim 10. If t ∈T o(Σ]N) then t ∆ →G ‖t‖.

Proof. The proof is done by induction. If t is a redex then ‖t‖ = t ∆. If t = a t1...tk with a ∈ Σ and
k = arity(a), assume that for all i, ti∆→ ‖ti‖. We have t ∆ = a t1...tk so t →G a (t1∆)...(tk∆). Hence
t∆→∗G a ‖t1‖...‖tk‖= ‖t‖.

Claim 11. For all t, if t ∈ AccG, then ‖t‖ ∈ AccG. This claim implies property (1).

Proof of Claim 11. We prove this by induction. If t = S, ‖t‖= S ∆, and I→ S ∆, so ‖t‖ ∈ AccG.
Let t =C[F t1...tk] ∈AccG with k = arity(F) and hss(C) contains ony terminal symbols. Assume that

‖t‖ ∈ AccG. Given that F x1...xk→ e ∈R, let t ′ =C[e[∀i xi 7→ti]].
First, given a ground type context C[•o], we can define the associated ground type context ‖C‖[•o] by

adding to Definition 1 the fact ‖•o ‖= •o. Hence we can say that ‖t‖= ‖C‖[F t1...tk ∆].
We see that ‖t‖ →G ‖C‖[e[∀i xi 7→ti] ∆]. Claim 10 shows that e[∀i xi 7→ti] ∆ = e[∀i xi 7→ti]∆→∗G ‖e[∀i xi 7→ti]‖,

hence ‖t‖→G ‖C‖[e[∀i xi 7→ti] ∆]→∗G ‖C‖[‖e[∀i xi 7→ti]‖] = ‖t ′‖.

Claim 12. Given a term t ′ ∈ AccG there exists a term t ∈ AccG such that t ′→G ‖t‖. This claim implies
property (2).

Proof of Claim 12. We will divide the relation→G in two relations : →G=→Σ]→N depending of the
head symbol of the redex we’re rewritting. Let t→G t ′ if the rewrite rule applied is ra for some a ∈ Σ then
t→Σ t ′, if the rewrite rule is rF with F ∈N , then t→N t ′.

The proof is in four steps:

12

1. Given a term t ∈ AccG, there is only a finite number of derivation t→∗
Σ

t ′, furthermore, if t→∗
Σ

t1
and t→∗

Σ
t2 such that there is no t ′ such that t1→∗Σ t ′ or t2→∗Σ t ′, then t1 = t2. We name this unique

term tΣ, and we notice that if t→∗
Σ

t ′ then t ′→∗
Σ

tΣ. Basically this step comes from the fact that the
relation→Σ strictly decrease the number of occurrences of terms headed by some a with a ∈ Σ.

2. Let t =C[F t1...tarity(F)], then tΣ =CΣ[F t1...tarity(F)], CΣ being defined inductively: if C[•] = • then
CΣ[•] = •, if C[•] = a t1...C′[•]...tk, then CΣ[•] = a tΣ

1 ...C
′Σ[•]...tΣ

k (Claim 9 shows that these are the
only possibilities). This step is shown by induction.

3. If t→N t ′ i.e. t =C[F t1...tk] and t ′ =C[e[∀i xi 7→ti] ∆] with the appropriate e, let t ′′ =CΣ[e[∀i xi 7→ti] ∆],
then t ′Σ = t ′′Σ.

4. Finally we prove by induction that for all t ′, there exists t ∈ AccG such that t ′Σ = ‖t‖, which proves
the claim.

B The Type System Detailed

We give here a complete proof of Theorem 3 and Proposition 4. We first recall the type system, and the
definition of ` (G, t).σ .

Θ ` t .θ1 ... Θ ` t .θn

Θ ` t .
∧
{θ1, ...,θn}

(Set)

Θ,α .
∧
{θ1, ...,θn} ` α .θi

(At) (for all i)

Θ ` a.σ1→ ...→ σi≤arity(a)→ q∞

(Σ)(for a a ∈ Σ and ∃ j σ j = q∞)

Θ ` t1 .σ → θ Θ ` t2 .σ

Θ ` t1 t2 .θ
(App)

Θ ` t .q∞→ q∞

(q∞→ q∞ I) (if t : τ1→ τ2)

Θ ` t1 .q∞

Θ ` t1 t2 .q∞

(q∞ I)

Remark that:

• Using rule (Set) one can always prove, for any term t, Θ ` t .
∧
{}.

• Θ ` t .
∧
{θ1, ...,θk} if and only if , for all i, Θ ` t .θi.

• There is no rules that directly involve q⊥, but that does not mean that no term matches q⊥, since it
can appears in Θ. Rules like (At) or (App) may be use to state that a term matches q⊥.

We say that (G, t) matches the conjunctive mapping σ written ` (G, t).σ if there exists an environment
Θ, called a witness environment of ` (G, t).σ , which verifies the following properties:

1. Dom(Θ) = N ,

2. ∀F : τ ∈N Θ(F) :: τ ,

13

3. if F x1...xk→ e ∈R and Θ ` F .σ1→ ...→ σi≤k→ q then either there exists j such that q∞ ∈ σ j,
or i = k and Θ,x1 .σ1, ...,xk .σk ` e.q,

4. Θ ` t .σ .
Lemma 13 (Isolated Non Terminals). Given a non terminal F that has not ground type. Then if Θ verifies
properties 1 to 3, one cannot prove Θ ` F .q∞.

Proof of lemma 13. The proof comes from the fact that Θ verifies property 3. Assume Θ ` F .σ1 →
...→ σi→ q∞. Property 3 states that if i < arity(F) then there exists j ≤ i such that q∞ ∈ σ j in particular
i 6= 0. If i = arity(F) then by hypothesis, i 6= 0. Then, one cannot prove Θ ` F .q∞.

Lemma 14 (Non fully-applied terminals). Let Θ be an environment that verifies properties 1 to 3, let F
be a non terminal that has not ground type and let t = F t1...ti with i < arity(F). If Θ ` F t1...ti .q∞ then
there exists j ≤ i such that Θ ` ti .q∞.

Proof of Lemma 14. We prove by induction on l the following more general result: if Θ`F t1...tl .σl+1→
...→ σi→ q∞ with F ∈N and i < arity(F), then there exists j≤ i such that Θ ` t j .q∞ if j≤ l or q∞ ∈ σ j

if j > l.
If l = 1, then the rule we used to prove Θ ` F t1 .σ2→ ...→ σi→ q∞ could not be (q∞ I) since one

cannot prove Θ ` F . q∞. If the rule we used were (q∞→ q∞ I), then q∞ ∈ σ2. If it is rule (App) then
Θ ` F .σ1→ σ2→ ...→ σi→ q∞ and Θ ` t1 .σ1, and since i < arity(F), property 3 states that there
exists j < l such that Θ ` t1 .q∞ if j = 1, q∞ ∈ σ j elseway. These are the only rules we could have applied.

If l > 1. If we applied rule (q∞ I) then Θ ` F t1...tl−1 . q∞ by induction hypothesis there exists
j ≤ l−1 such that Θ ` t j .q∞. If we applied rule (q∞→ q∞ I), then q∞ ∈ σl+1. If we applied rule (App)
then Θ ` F t1...tl−1 .σl→ σl+1→ ...→ σi→ q∞ and Θ ` tl .σ1 then by induction hypothesis there exists
j ≤ i such that either Θ ` t j .q∞ if j < l or q∞ ∈ σ j if j ≥ l. If j ≤ l then either j < l and then Θ ` t j .q∞,
or j = l and q∞ ∈ σ j hence Θ ` t j .q∞, if j > l then q∞ ∈ σ j if j ≥ l.

Lemma 15 (Redexes and q∞). (1) If Θ verifies properties 1 to 3, then given a term t, if Θ ` t .q∞ then
either t contains a redex r such that Θ ` r .q∞. In particular, if t does not contains any redex, then one
cannot prove Θ ` t .q∞.

(2) If Θ verifies properties 1 to 3, then given a term t, if t contains a redex r such that Θ ` r .q∞ then
one can prove Θ ` t .q∞.

Proof of Lemma 15. We prove (1) by induction on t. Assume that Θ ` t .q∞.
If t : o then either t = F t1...tk in which case t is the redex r, or t = a t1...tk then the ony rule we could

have applied to prove Θ ` t .q∞ is (Σ), then there exists ti : o such that Θ ` ti .q∞, and the result comes
by induction.

If t : τ with τ 6= o. We could not have t = F ∈N since one cannot prove Θ ` F . q∞ if F has not
ground type. If t = a t1...ti then again there exists ti : o such that Θ ` ti . q∞, and the result comes by
induction. If t = F t1...ti, F has not ground type, and i < arity(F) since t has not ground type. Then
Lemma 14 states that there exists t j such that Θ ` t j .q∞ and the result comes by induction.

To prove (2), assume that there is a redex r such that Θ ` r . q∞ and t = C[r]. We prove the result
by induction on C[•]. If C[•] = •, then t = r therefore Θ ` r . q∞. Assume t = t1 t2 with t1 = C′[r] or
t2 =C′[r]. If t1 =C′[r] then by induction hypothesis, one can prove Θ ` t1 .q∞ and then, using rule q∞ I,
Θ ` t1 t2 .q∞. If t2 =C′[r], by induction hypothesis, one can prove Θ ` t2 .q∞, using rule (q∞→ q∞ I),
we have Θ ` t1 .q∞→ q∞ and then, rule (App) gives us Θ ` t1 t2 .q∞.

14

Lemma 16 (Ground type terms and q⊥). if Θ verifies properties 1 to 3, then if t : τ and Θ ` t .σ , σ :: τ .
In particular, if Θ ` t .q⊥, then t : o.

Proof of Lemma 16. We can assume, without loss of generality that σ = {θ} for some atomic mapping
θ . We prove this by induction on the structure of t.

If t = α with α ∈ Σ]N , then the only rules we can apply are (At), (Σ) and (q∞→ q∞ I) and they all
satisfy the property.

If t = t1 t2 with t1 : τ2→ τ and t2 : τ2, then the rules we can apply are either (q∞) or (App). If it is (q∞)
then we have proven Θ ` t .q∞ and q∞ :: τ . If it is (App) it means that we have proven Θ ` t1 .σ ′→ θ

and Θ ` t2 .σ ′, and by induction hypothesis, σ ′ :: τ2 and θ :: τ .

Theorem 17 (Soundness). Let G be an HORS, and t be term (of any type), if ` (G, t) . q∞ (resp. `
(G, t).q⊥) then P∞(t) (resp. P⊥(t)) holds.

Proof of Theorem 17.

Lemma 18 (Type Preservation). Let t : τ be a term. If ` (G, t).σ and t→IO t ′ then ` (G, t ′).σ .

Proof of Lemma 18. Assume that ` (G, t).σ and t→IO t ′. Let Θ be a witness environment of ` (G, t).σ ,
we will prove that it is also a witness environment of ` (G, t ′).σ (we only have to check that Θ ` t ′ .σ).

We know that t = C[F s1...sk] and t ′ = C[e[∀i xi 7→si]] for some context C[• : o] : τ . We proceed by
induction on C[•].

If C[•] = •, we can assume without loss of generality that σ = q ∈ Q. We look at the proof of
` (G, t ′).σ and remark that either (1) the proof contains Θ ` F .σ1→ ...→ σk→ σ and Θ ` si .σi for
all i and the last steps are using the rule (App), or (2) the proving tree contains Θ ` F s1...si .q∞→ q∞

and Θ ` si+1 .q∞, the last steps are using the rule (App) once and then only rule (q∞I). The former case
is impossible: since t→IO t ′ is an IO derivation there’s no redex in si for all i, hence Lemma 15 shows
that one cannot have Θ ` si+1 .q∞.

Hence the proving tree contains Θ ` F .σ1 → ...→ σk → σ and Θ ` si .σi for all i, then Θ,x1 .
σ1, ...,xk .σk ` e . q, and if we replace all statements of xi .σi by the proof of Θ ` si .σi, we obtain a
proof of Θ ` e[∀i xi 7→si] .σ .

Now we prove the induction step. Assume that C =C′[•] t2 or C = t1 C′[•], thent = t1 t2 with either
t1 =C′[F s1...sk] or t2 =C′[F s1...sk]. Then t ′ = t ′1 t ′2 with respectively, either t ′1 =C′[e[∀i xi 7→si]] and t ′2 = t2,
or t ′1 = t1 and t ′2 = C′[e[∀i xi 7→si]]. Either way, by induction hypothesis, if Θ ` t1 .σ1 (resp. Θ ` t2 .σ2),
then Θ ` t ′1 .σ1 (resp. Θ ` t ′2 .σ2). Assume we have proven Θ ` t .σ . In order to do it, either we have
use rule (q∞ I) or rule (App), either way we could use the same rule to prove Θ ` t ′ .σ .

We extend in an intuitive way the properties P⊥ and P∞ to trees: if t is a tree then P⊥(t) =“t =⊥”
and P∞(t) =“t is either infinite or contains ⊥.”.

Lemma 19 (Weak Soundness). Given a term t : o, (1) if ` (G, t) . q⊥ , then P⊥(t⊥) holds, (2) if
` (G, t).q∞, then P∞(t⊥) holds.

Proof of Lemma 19. We can use Lemma 15 to prove (2): if ` (G, t).q∞ then t contains a redex, hence
t⊥ contains ⊥, therefore P∞(t⊥) holds.

We prove (1) by induction on the structure of t⊥. If t⊥ =⊥ then P⊥(t⊥) is true hence (1) holds. If
t⊥ = a with a ∈ Σ, then t = a and there is no rule that we can apply to state ` (G,a) . q⊥, hence (1)
and (2) holds. If t⊥ = a t ′1...t

′
k with k > 0, then t = a t1...tk with a ∈ Σ and t⊥i = t ′i for all i. For all

15

environment Θ, we show by induction that for all i, if Θ ` a t1...ti .σ ′ then σ ′ = σ1→ ...→ σl → q∞:
The term a can only be judge by the rule (Σ) hence it is true if i = 0, the term (a t1...ti) ti+1 can be
judge by rules (q∞ I), (q∞→ q∞ I) and (App) and by induction hypothesis, in all three cases, we get
Θ ` a t1...ti . σ1 → ...→ σl → q∞ for some l. In particular, we don’t have ` (G, t) . q⊥, hence (1)
holds.

Using Lemma 1 and 2, in order to prove Therorem 17 we can assume that t : o. We prove it by
contradiction. Assume that ` (G, t).q∞ but P∞(t) doesn’t hold. Then it means that ‖Gt‖ is finite and
contains only terminals. Since it’s finite, there exists a finite IO derivation from t that leads to ‖Gt‖:
t →∗IO ‖Gt‖, hence using Lemmas 18 and 19 we can prove P∞((‖Gt‖)⊥), but since ‖Gt‖ is a tree,
‖Gt‖= (‖Gt‖)⊥, hence ‖Gt‖ is infinite or contains ⊥ which raises a contradiction.

We treat the case ` (G, t).q⊥ the same way: Assume that ` (G, t).q⊥ but P⊥(t) doesn’t hold. Then
it means that ‖Gt‖ contains some terminals. Then there exists a finite IO derivation from t that leads to a
term t ′ such that t ′⊥ 6= ⊥: t →∗IO t ′, hence using Lemmas 18 and 19 we can prove P⊥((t ′)⊥) which is
false.

Theorem 20 (Completeness). Let G be an HORS, if P∞(t) (resp. P⊥(t)) holds then ` (G, t).q∞ (resp.
` (G, t).q⊥).

Proof of Theorem 20.
Using Lemma 15 we can assume without loss of generality that t has ground type.
We recall the properties that an environment Θ has to satisfy in order to be a witness of ` (G, t).σ .

1. Dom(Θ) = N ,

2. ∀F : τ ∈N Θ(F) :: τ ,

3. if “F x1...xk→ e”∈R and Θ ` F .σ1→ ...→ σi≤k→ q then either there exists j such that q∞ ∈ σ j,
or i = k and Θ,x1 .σ1, ...,xk .σk ` e.q,

4. Θ ` t .σ .

Let E be the set of environment that matches properties 1 and 2. Let F : E → E be a mapping such
that for all F : τ1→ ...→ τk→ o ∈N , if F x1...xk→ e∈R then,

F (Θ)(F) = {σ1→ ...→ σk→ q | q ∈ Q∧∀i σi :: τi∧Θ,x1 .σ1, ...,xk .σk ` e : q}
∪{σ1→ ...→ σi≤k→ q∞ | ∧∀i σi :: τi∧∃ j q∞ ∈ σ j}

∪{σ1→ ...→ σk→ q⊥ | ∀i σi :: τi∧∃ j q∞ ∈ σ j}.

Let Θ0 ∈ E be the environment such that, for all F : τ = τ1→ ...→ τk→ o ∈N , Θ0(F) is defined
and contains all atomic mappings θ ::a τ . Notice that:

Θ0(F) = {σ1→ ...→ σk→ q | q ∈ Q∧∀i σi :: τi}∪{σ1→ ...→ σi<k→ q∞ | ∀ j σ j :: τ j}.

Lemma 21 (Universal Witness). There exists m ∈ N such that the judgment ` (G, t).σ holds if and only
if F m(Θ0) ` t .σ (This is Proposition 4 with Θ? = F m(Θ0)).

Proof of Lemma 21. We define the partial order v on E such that Θ1 vΘ2 if and only if, for all F ∈N ,
Θ1(F)⊆Θ2(F). Note that if Θ1 vΘ2 and Θ1 ` t .σ then Θ2 ` t .σ . Θ0(F) contains all atomic mappings
θ ::a τ , hence Θ0 is a maximum of E with respect to v. Note that the mapping F is monotonic with

16

respect to v (i.e. if ΘvΘ′ then F (Θ)vF (Θ′)). Given Θ ∈ E , we say that Θ is a post-fixpoint of F if
and only if ΘvF (Θ). Remark that being a post-fixpoint of F is the same as verifying property 3.

Since Θ0 is a maximum of E , and F (Θ0) ∈ E , then Θ0 wF (Θ0), therefore, since F is monotonic,
Θ0 wF (Θ0) wF 2(Θ0) w Because E is finite, there exists m such that F m(Θ0) = F m+1(Θ0), in
particular F m(Θ0) is a post-fixpoint of F , hence it verifies properties 1, 2, and 3.

Take a witness Θ of ` (G, t) . σ . Θ is a post-fixpoint of F , and since F m(Θ0) is the greatest
post-fixpoint, F m(Θ0)wΘ, hence F m(Θ0) ` t .σ , thus F m(Θ0) is a witness of ` (G, t).σ .

Let G(m) = 〈V ,Σ,N (m)]{Void : o},R(m), I〉 be the scheme such that N (m) =
⋃

0≤i≤m{Fi | F ∈N }.
For all F x1...xk→ e∈R, R(m) contains the following rewrite rules:

Fi x1...xk→ e[∀H∈N H 7→Hi−1] f or i > 0

F0 x1...xk→ e[∀H∈N H 7→H0]

F0 x1...xk→Void

Void→Void

Notice that Void here is a non-terminal of order 0 that produce itself. Hence applying its rewrite rule
to a term would produce the same term. In the following we forbid this rule to be applied. G(m) with this
restriction is said to be recursion free, i.e. the graph whose vertices are the non terminals and where there
is an edge from F to G if and only if there exist an allowed rewrite rule F x1...xk→ e such that e contains
an occurence of G, has no loop. Such non-recursive schemes are known to be strongly normalizing, i.e.
for any term t all derivations using only allowed rewrite rules are finite. In particular, there exists a finite
IO derivation t→∗IO t ′ such that (t ′)⊥ = ‖t‖IO.

We define the environment Θ(m) on N (m)] {Void}: for all F ∈ N , for all i ≤ j, Θ(m)(Fi) =
F i(Θ0)(F) and Θ(m)(Void) =

∧
{q∞,q⊥}.

Lemma 22. Given a two terms t, t ′ ∈T (Σ]N (m)) such that t→IO t ′ is allowed in G(m). If Θ(m) ` t ′ .σ ,
then Θ(m) ` t .q.

Proof of Lemma 22. We proceed by induction on the structure of t. We prove the initial case: t = Fl s1...sk
and t ′ = e[∀i xi 7→si], with Fl x1...xk→ e∈R. We assume without loss of generality that σ is atomic, hence
σ = q ∈ Q. Let σi be the union of all mappings assigned to si in the proof of Θ(m) ` e[∀i xi 7→si] .q. Then
we have Θ(m),x1 .σ1, ...,xk .σk ` e . q. Let Θ′ = Θ(m),Fl .σ1 → ...→ σk → q. Since Θ′ ` Fl .σ1 →
...→ σk → q, and Θ′ ` si .σi (indeed, Θ(m) ⊆ Θ′), we can prove Θ′ ` t . q. If l = 0, by definition,
F .σ1→ ...→ σk→ q∈Θ0(F), and since Θ(m)(F0) =Θ0(F), we have F .σ1→ ...→ σk→ q∈Θ(m)(F0),
hence Θ′ = Θ(m). If l > 0, e only contains terminals of the form Gl−1, then we can transform the proof
of Θ(m),x1 .σ1, ...,xk .σk ` e.q to obtain a proof of F l−1(Θ0),x1 .σ1, ...,xk .σk ` e[∀G∈N Gl−1 7→G] .q.
Then by definition of F , F .σ1 → ...→ σk → q ∈F l(Θ0)(F), and since Θ(m)(Fl) = F l(Θ0)(F),we
have σ1→ ...→ σk→ q ∈Θ(m)(Fl), hence Θ′ = Θ(m). Thus Θ(m) ` t .q.

For the induction step, We assume without loss of generality that σ =
∧
{θ}. Assume that C =C′[•] t2

or C = t1 C′[•], then t = t1 t2 with either t1 = C′[F s1...sk] or t2 = C′[F s1...sk]. Then t ′ = t ′1 t ′2 with
respectively, either t ′1 =C′[e[∀i xi 7→si]] and t ′2 = t2, or t ′1 = t1 and t ′2 =C′[e[∀i xi 7→si]]. Either way, by induction
hypothesis, if Θ(m) ` t ′1 .σ1 (resp. Θ(m) ` t ′2 .σ2), then Θ(m) ` t1 .σ1 (resp. Θ(m) ` t2 .σ2). Assume we

17

have proven Θ(m) ` t ′ .σ . In order to do it, either we have used rule (q∞ I) or rule (App), either way we
could use the same rule to prove Θ(m) ` t .σ .

Lemma 23 (Terms that contains Void). Given a term t that contains the non terminal Void, one can prove
Θ(m) ` t .q∞.

Proof of Lemma 23. We prove the result by induction on the structure of t : if t =Void then we use rule
(At) , if t = G j t1...ti with G j ∈N (m) and t` contains Void for some `≤ i, then by induction hypothesis,
Θ(m) ` t` . q∞. Using rule (Set) we have, for all `′ 6= `, Θ(m) ` t`′ .

∧
{}. We have by construction

Θ(m) ` a .σ1 → ...→ σk → q∞ for σ j = q∞ and σi =
∧
{} for all i 6= j. Then, if we apply k times

rule (App) we can prove Θ(m) ` a t1...tk . q∞. By definition, if σ`′ 6=` =
∧
{} and σ` = q∞, we have

σ1→ ...→ σi→ q∞ ∈Θ(m)(G j). Hence one can prove Θ(m) ` ti .q∞.
if t = G j t1...ti with a ∈ Σ and t` contains Void for some `≤ i the proof is similar except we use rule

(Σ) to prove Θ(m) ` a.σ1→ ...→ σi→ q∞ with σ`′ 6=` =
∧
{} and σ` = q∞.

Lemma 24 (Weak Completeness). Given a term t : o ∈T (Σ]N (m)), if P⊥(t⊥) (resp. P∞(t⊥)) holds
and if there exists no IO allowed rewrite rule we can apply in t, then Θ(m) ` t .q⊥ (resp. /0 ` t⊥ .q∞).

Proof of Lemma 24. We prove both results simultaneously by induction on the structure of t. If t =Void
then one can directly prove both result using rule (At). We know that t 6= a with a ∈ Σ since P⊥(a)
(resp. P∞(a)) does not hold. If t = a t1...tk, we know that P⊥(t⊥) doesn’t hold, assume that P∞(t⊥)
holds. Since t⊥ contains ⊥, there exists j such that t⊥j contains ⊥, i.e. P∞(t⊥j). Furthermore there
exists no allowed rewrite rule we can apply in t j, elseway we could apply it in t. Therefore, by induction
hypothesis, Θ(m) ` t j . q∞. Using rule (Set) we have, for all i 6= j, Θ(m) ` ti .

∧
{}. Rule (Σ) gives

Θ(m) ` a.σ1→ ...→ σk → q∞ for σ j = q∞ and σi =
∧
{} for all i 6= j. Then, if we apply k times rule

(App) we can prove Θ(m) ` a t1...tk .q∞.
Assume now that t = Fl t1...tk with Fl ∈N (m). Since there exists no IO allowed rewrite rule we can

apply in t it means that there exists i such that ti contains a redex, but this redex can’t be applied, in
other words, ti contains Void. Using Lemma 23 we have Θ(m) ` ti .q∞. By definition, if σ j 6=i =

∧
{} and

σi = q∞, we have σ1→ ...→ σk→ q ∈Θ(m)(Fl) for q ∈ Q. Hence one can prove Θ(m) ` t .q.

Now, we can prove the Theorem. Given a term t : o ∈T (Σ]N), assume that P⊥(t) (resp. P∞(t))
holds. We define the term t(m) : o = t[∀F∈N F 7→Fi] ∈ T (Σ]N (m)). Notice that ‖G(m)

t(m)‖IO is obtained
by turning some subtrees of ‖Gt‖IO into ⊥. Hence, P⊥(t(m)) (resp. P∞(t(m))) holds. Let t ′ : o ∈
T (Σ]N (m)]{⊥}) such that t(m) →∗IO t ′ and (t ′)⊥ = ‖G(m)

t(m)‖IO (we have seen previously that such
t ′ exists). Lemma 24 states that Θ(m) ` t ′ . q⊥ (resp. Θ(m) ` t ′ . q∞), then, Lemma 22 shows that
Θ(m) ` t(m) . q⊥ (resp. Θ(m) ` t(m) . q∞). Since non terminals in t(m) have the form Fm , if we restrict
the domain of Θ(m) only to {Fm | F ∈N } the proof still holds, furthermore in this proof, if we remove
all “m” subscripts, we get F m(Θ0) ` t .q⊥ (resp. F m(Θ0) ` t .q∞). Lemma 21 allows us to conclude:
` (G, t).q⊥ (resp. ` (G, t).q∞).

18

C Selfcorrecting Scheme

Proof of Theorem 5.

Lemma 25 (Equality of Trees). Let t : o ∈T (V]N) be a term, then t⊥ = (t+)⊥.

Proof of Lemma 25. We prove it by induction on the structure of t : o. If t = F t1...tk with F ∈N then

t⊥ =⊥ and t+ = FJt1K,...,JtkK t
~σ

τ1
1

1 ...t
~σ

τk
dτke

1 , then (t+)⊥ =⊥= t⊥.
If t = a t1...tk with a : ok → o ∈ Σ and ti : o for all i, then t+ = aJt1K,...,JtkKt+1 ...t+k , t⊥ = a t⊥1 ...t⊥k and

(t+)⊥ = a (t+1)⊥...(t+k)⊥. By induction hypothesis, for all i (t+i)⊥ = t⊥i , then (t+)⊥ = a t⊥1 ...t⊥k = t⊥.

Lemma 26 (Label Conservation in Rewrite Rules). Given a term t : τ = τ1→ ...→ τk→ o ∈T (Σ]N),

such that t = F s1...sk with F ∈N , and t is an IO-relevant redex. Note that t+ = FJs1K,...,JskK s
~σ

τ1
1

1 ...s
~σ

τk
dτke

k .
If F x1...xk → e∈R, let t ′ = e[∀i xi 7→si] and s = e+

ΘV

[x
~σ

τi
j

i 7→s
~σ

τi
j

i]
with ΘV (xi) = JsiK for all i (in particular,

t→ t ′ and t+→ s).
We have s = (t ′)+.

Proof of Lemma 26. Besides the labeling, by construction, s matches (t ′)+. Take a subterm e′ of e, if
one can prove Θ? ` e′[∀i xi 7→si] .σ , then one can prove Θ?,ΘV ` e′ .σ , hence s is well labeled, therefore
s = (t ′)+. Then t+→∗IO (t ′)+.

Given two terms t, t ′, we write t⇒IO t ′ if t ′ is obtained by applying in parallel all IO rewrite availables
in t. Formally, we define it inductively: if t is an IO-relevant redex and t ′ is the term obtained by rewriting
this redex then t⇒IO t ′. If t is not an IO redex and t = t1 t2 then t⇒IO t ′ if and only if:

• either there exists t ′1, t
′
2 such that t1⇒IO t ′1 and t2⇒IO t ′2, and t ′ = t1 t2,

• or there exists t ′1 such that t1⇒IO t ′1 but no t ′2 such that t2⇒IO t ′2 and t ′ = t ′1 t2,

• or there exists t ′2 such that t2⇒IO t ′2 but no t ′1 such that t1⇒IO t ′1 and t ′ = t1 t ′2.

Notice that if such t ′ exists then it is unique, and it exists if and only if t contains a redex. The · ⇒IO ·
relation is known as parallel rewrite, and from a term t : o, the unique associated parallel derivation
t⇒IO t1⇒IO t2⇒IO ... leads to the tree ‖Gt‖.

Lemma 27 (Coincidence of Parallel Derivation). Given a terms t ∈T (Σ]N), and some conjunctive
mappings σ1, ...,σk. There exists t ′ ∈ T (Σ]N) such that t ⇒IO t ′, if and only if there exists s′ ∈
T (Σ′]N ′) such that t+σ1,...,σk ⇒IO s′. Furthermore, if it is true, then s′ = (t ′)+σ1,...,σk .

Proof of Lemma 27. The first part of the result comes from the observation that t contains a redex if
and only if t+,σ1,...,σk contains a redex. We prove the second part by induction. If t is an IO-relevant
redex, t+σ1,...,σk is too, and Lemma 26 proves the result. If t = t1 t2, t is not an IO-relevant redex a then

t+σ1,...,σk = t+σ ,σ1,...,σk
1 t+

~σ τ
1

2 ...t
+~σ τ

dτe
2 and t+σ1,...,σk is not an IO-relevant redex. Assume that t⇒IO t ′ then,

• either there exists t ′1, t
′
2 such that t1⇒IO t ′1 and t2⇒IO t ′2, and t ′ = t ′1

′t2,

• or there exists t ′1 such that t1⇒IO t ′1 but no t ′2 such that t2⇒IO t ′2 and t ′ = t ′1 t2,

• or there exists t ′2 such that t2⇒IO t ′2 but no t ′1 such that t1⇒IO t ′1 and t ′ = t1 t ′2.

By induction hypothesis, ti⇒IO t ′i if and only if t+i ⇒IO t ′i
+ for i ∈ {1,2}, hence

19

• either there exists t ′1, t
′
2 such that t+σ ,σ1,...,σk

1 ⇒IO t ′1
+ and t

+~σ τ
j

2 ⇒IO t ′2+ for all j, and (t ′)+σ1,...,σk =

(t ′1)
+σ ,σ1,...,σk (t ′2)

+~σ τ
1 ...(t ′2)

+~σ τ

dτe ,

• or there exists t ′1 such that t+σ ,σ1,...,σk
1 ⇒IO t ′1

+ but no s′2 such that t
+~σ τ

j
2 ⇒IO s′2 for all j, and

(t ′)+σ1,...,σk = (t ′1)
+σ ,σ1,...,σk (t2)+~σ

τ
1 ...(t2)

+~σ τ

dτe ,

• or there exists t ′2 such that t
+~σ τ

j
2 ⇒IO (t ′2)

+~σ τ
j but no s′1 such that t+σ ,σ1,...,σk

1 ⇒IO s′1, and (t ′)+σ1,...,σk =

(t1)+σ ,σ1,...,σk (t ′2)
+~σ τ

1 ...(t ′2)
+~σ τ

dτe .

Therefore, t+σ1,...,σk ⇒ (t ′)+σ1,...,σk .

Given a term t : o let t ⇒IO t1 ⇒IO t2 ⇒IO ... be the parallel derivation associated to it. Thanks
to Lemma 27 we know that the parallel derivation associated to t+ is t+⇒IO t+1 ⇒IO t+2 ⇒IO ..., then
‖G′t+‖IO is the limit of (t+i)

⊥ then (‖G′t+‖IO)
− is the limit of ((t+i)

⊥
)− = (ti)⊥. Then ‖G′t+‖IO = ‖Gt‖IO.

Proof of ‖G′′‖IO = ‖G′‖IO. Take a term t ∈T (Σ]N) we define void(t) ∈T (Σ]N]{Void}) as the
set of termes obtained by substituing some redex r in t such that ‖G′r‖IO =⊥ by Void. From the definition
comes that if t ′ ∈ void(t) then (t ′)⊥ = t⊥.

Given a term t ∈T (Σ]N) and an IO derivation associated t = t1→IO t2→IO ... in G′ we construct
by induction an IO derivation in G′′ t = t ′1 →IO t ′2 →IO ... such that for all i t ′i ∈ void(ti). The initial
step is straightforward: t ∈ void(t), Assume that t ′i ∈ void(ti), and assume that ti = C[F t1...tk] and
ti+1 =C[e[∀i xi 7→ti]] with F x1...xk→ e ∈R ′. If this redex is a subterm of another one that is transformed
by Void in t ′i then we just rewrite this void obtaining t ′i+1 = t ′i by induction hypothesis, we still have t ′i+1 ∈
void(ti+1). If this redex is not transformed in t ′i then we rewrite this redex, and either ‖F t1...tk‖IO =⊥, in
which case the semantics associated contains q⊥ thanks to Theorem 5, and then e[∀i xi 7→ti] is still a redex
and is transformed to Void in t ′i+1 or ‖F t1...tk‖IO 6=⊥ and no more transformation is added to create t ′i+1,
in both cases t ′i+1 ∈ void(ti+1).

This result gives that ‖G′‖IO v ‖G′′‖IO. Since G′′ is obtained by from G′ changing some redex into
other that will produce ⊥, it is clear that ‖G′′‖IO v ‖G′‖IO, then ‖G′‖IO = ‖G′′‖IO.

Proof of ‖G′′‖= ‖G′′‖IO. We already know that ‖G′′‖IO v ‖G′′‖, we just have to show that for all t, if
there is ⊥ at node u in ‖G′′t ‖IO then there is ⊥ at node u in ‖G′′t ‖IO. We show this by induction on the
size of u.

If ‖G′′t ‖IO =⊥. Then ‖G′t‖IO = ‖Gt‖IO =⊥, hence JtK =⊥, hence the only derivation in G′′ from t
is t→Void→Void→ ..., therefore ‖G′′‖=⊥. If u = ju′ then let a be the terminal at the root of ‖G′′‖IO,
then there exists an IO derivation t →∗ a t1...tk, and ‖G′′t j

‖IO is equal to the subtree of ‖G′′t ‖IO rooted
at node j. Since t →∗ a t1...tk, ‖G′′t j

‖ is equal to the subtree of ‖G′′t ‖ rooted at node j and by induction
hypothesis, since there is ⊥ at node u′ in ‖G′′t j

‖IO, there is ⊥ at node u′ in ‖G′′t j
‖ hence there is ⊥ at node

u in ‖G′′t j
‖.

	Introduction
	Preliminaries
	From OI to IO
	From IO to OI
	The Type System
	Self-Correcting Scheme

	Conclusion
	Appendices
	From OI to IO
	The Type System Detailed
	Selfcorrecting Scheme

