203 research outputs found

    Characterization of cationic lipid DNA transfection complexes differing in susceptability to serum inhibition

    Get PDF
    BACKGROUND: Cationic lipid DNA complexes based on DOTAP (1,2-dioleoyl-3-(trimethyammonium) propane) and mixtures of DOTAP and cholesterol (DC) have been previously optimized for transfection efficiency in the absence of serum and used as a non-viral gene delivery system. To determine whether DOTAP and DC lipid DNA complexes could be obtained with increased transfection effciency in the presence of high serum concentrations, the composition of the complexes was varied systematically and a total of 162 different complexes were analyzed for transfection efficiency in the presence and absence of high serum concentrations. RESULTS: Increasing the ratio of DOTAP or DC to DNA led to a dose dependent enhancement of transfection efficiency in the presence of high serum concentrations up to a ratio of approximately 128 nmol lipid/μg DNA. Transfection efficiency could be further increased for all ratios of DOTAP and DC to DNA by addition of the DNA condensing agent protamine sulfate (PS). For DOTAP DNA complexes with ratios of ≤ 32 nmol/μg DNA, peak transfection efficiencies were obtained with 4 μg PS/μg DNA. In contrast, increasing the amount of PS of DC complexes above 0.5 μg PS /μg DNA did not lead to significant further increases in transfection efficiency in the presence of high serum concentrations. Four complexes, which had a similar high transfection efficiency in cell culture in the presence of low serum concentrations but which differed largely in the lipid to DNA ratio and the amount of PS were selected for further analysis. Intravenous injection of the selected complexes led to 22-fold differences in transduction efficiency, which correlated with transfection efficiency in the presence of high serum concentrations. The complex with the highest transfection efficiency in vivo consisted of 64 nmol DC/ 16 μg PS/ μg DNA. Physical analysis revealed a predicted size of 440 nm and the highest zeta potential of the complexes analyzed. CONCLUSIONS: Optimization of cationic lipid DNA complexes for transfection efficiency in the presence of high concentrations of serum led to the identification of a DC complex with high transduction efficiency in mice. This complex differs from previously described ones by higher lipid to DNA and PS to DNA ratios. The stability of this complex in the presence of high concentrations of serum and its high transduction efficiency in mice suggests that it is a promising candidate vehicle for in vivo gene delivery

    Early protection against pathogenic virus infection at a mucosal challenge site after vaccination with attenuated simian immunodeficiency virus

    Get PDF
    Atraumatic application of attenuated SIVmac23Δnef vaccine to the tonsils of rhesus macaques provided protection against challenge 26 weeks later with infectious SIVmac251 applied through this route. Early events at the mucosal portal of entry of challenge virus were followed. Wild-type virus was detected in nonvaccinated controls by day 4, and then simian immunodeficiency virus (SIV) replicated vigorously at days 7 and 14. In contrast, a challenge of 10 of 10 vaccinees with SIV did not significantly raise RNA levels in the plasma or increase infected cells in lymphoid tissues, as assessed by single-cell labeling for viral RNA and nef protein. Vaccine virus was found in the tonsils of all vaccinees, but challenge virus was only detected at this portal of entry in 4 of 10 monkeys. In the tonsil, the challenge virus did not induce an expansion of perforin+ killer cells. However, there was a significant increase in γδ T cells and mature dendritic cells relative to unvaccinated controls. Therefore, during tonsillar SIVΔnef vaccination, infection is blocked early at the entry portal, which we propose is due in part to innate functions of γδ T and dendritic cells

    Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Granulocyte-macrophage colony-stimulating factor (GM-CSF) has shown promising results as a cytokine adjuvant for antiviral vaccines and in various models of tumor gene therapy. To explore whether the targeting of antigens to GM-CSF receptors on antigen-presenting cells enhances antigen-specific CD8 T-cell responses, fusion proteins of GM-CSF and ovalbumin (OVA) were expressed by DNA and adenoviral vector vaccines. In addition, bicistronic vectors allowing independent expression of the antigen and the cytokine were tested in parallel.</p> <p>Results</p> <p><it>In vitro</it>, the GM-CSF ovalbumin fusion protein (GM-OVA) led to the better stimulation of OVA-specific CD8+ T cells by antigen-presenting cells than OVA and GM-CSF given as two separate proteins. However, prime-boost immunizations of mice with DNA and adenoviral vector vaccines encoding GM-OVA suppressed CD8+ T-cell responses to OVA. OVA-specific IgG2a antibody levels were also reduced, while the IgG1 antibody response was enhanced. Suppression of CD8+ T cell responses by GM-OVA vaccines was associated with the induction of neutralizing antibodies to GM-CSF. In contrast, the coexpression of GM-CSF and antigens in DNA prime adenoviral boost immunizations led to a striking expansion of polyfunctional OVA-specific CD8+ T cells without the induction of autoantibodies.</p> <p>Conclusion</p> <p>The induction of autoantibodies suggests a general note of caution regarding the use of highly immunogenic viral vector vaccines encoding fusion proteins between antigens and host proteins. In contrast, the expansion of polyfunctional OVA-specific CD8+ T cells after immunizations with bicistronic vectors further support a potential application of GM-CSF as an adjuvant for heterologous prime-boost regimens with genetic vaccines. Since DNA prime adenoviral vector boost regimenes are presently considered as one of the most efficient ways to induce CD8+ T cell responses in mice, non-human primates and humans, further enhancement of this response by GM-CSF is a striking observation.</p

    GagPol-specific CD4+ T-cells increase the antibody response to Env by intrastructural help

    Get PDF
    Background: Immunization of rhesus macaques against Gag of SIV resulted in a more rapid appearance of Env antibodies after infection with SIV or SHIV challenge viruses although the vaccines lacked an Env component. We therefore explored whether T helper cells specific for internal HIV proteins could provide intrastructural help for Env-specific B cells and thus increase the Env antibody response. Results: Mice were immunized by adenoviral vector or DNA vaccines against GagPol and then boosted with virus-like particles (VLP) containing GagPol and Env. Env-specific antibody levels after the VLP booster immunizations were significantly higher in GagPol-immunized mice than in mock-vaccinated controls. Adoptive transfer of CD4+ T cells from GagPol-immunized mice also enhanced the Env antibody response to VLP immunization in the recipient mice. Depending on the presence of VLPs, co-cultivation of CD4+ T cells from GagPol-primed mice with BCR transgenic B cells specific for a protein presented on the surface of the VLPs also resulted in the activation of the B and T cells. Conclusions: Our study indicates that GagPol-specific T helper cells may provide intrastructural help for Env antibody responses. This cross-talk between immune responses directed against different components of the retroviral particle may be relevant for the immunopathogenesis of retroviral infections and allow to improve virus like particle vaccine approaches against HIV

    Rev Proteins of Human and Simian Immunodeficiency Virus Enhance RNA Encapsidation

    Get PDF
    The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5′ end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA

    Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Get PDF
    Abstract Background Targeting of protein antigens to dendritic cells (DC) via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR) and CD40 ligands (CD40L) as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C

    Calcium Phosphate Nanoparticle-Based Vaccines as a Platform for Improvement of HIV-1 Env Antibody Responses by Intrastructural Help

    Get PDF
    Incorporation of immunodominant T-helper epitopes of licensed vaccines into virus-like particles (VLP) allows to harness T-helper cells induced by the licensed vaccines to provide intrastructural help (ISH) for B-cell responses against the surface proteins of the VLPs. To explore whether ISH could also improve antibody responses to calcium phosphate (CaP) nanoparticle vaccines we loaded the nanoparticle core with a universal T-helper epitope of Tetanus toxoid (p30) and functionalized the surface of CaP nanoparticles with stabilized trimers of the HIV-1 envelope (Env) resulting in Env-CaP-p30 nanoparticles. In contrast to soluble Env trimers, Env containing CaP nanoparticles induced activation of naïve Env-specific B-cells in vitro. Mice previously vaccinated against Tetanus raised stronger humoral immune responses against Env after immunization with Env-CaP-p30 than mice not vaccinated against Tetanus. The enhancing effect of ISH on anti-Env antibody levels was not attended with increased Env-specific IFN-γ CD4 T-cell responses that otherwise may potentially influence the susceptibility to HIV-1 infection. Thus, CaP nanoparticles functionalized with stabilized HIV-1 Env trimers and heterologous T-helper epitopes are able to recruit heterologous T-helper cells induced by a licensed vaccine and improve anti-Env antibody responses by intrastructural help
    corecore