209 research outputs found

    Methane Production in a 100-L Upflow Bioreactor by Anaerobic Digestion of Farm Waste

    Get PDF
    Manure Waste from Dairy Farms Has Been Used for Methane Production for Decades, However, Problems Such as Digester Failure Are Routine. the Problem Has Been Investigated in Small Scale (1-2 L) Digesters in the Laboratory; However, Very Little Scale-Up to Intermediate Scales Are Available. We Report Production of Methane in a 100-L Digester and the Results of an Investigation into the Effect of Partial Mixing Induced by Gas Upflow/recirculation in the Digester. the Digester Was Operated for a Period of About 70 D (With 16-D Hydraulic Retention Time) with and Without the Mixing Induced by Gas Recirculation through an Internal Draft Tube. the Results Show a Clear Effect of Mixing on Digester Operation. Without Any Mixing, the Digester Performance Deteriorated within 30-50 D, Whereas with Mixing Continuous Production of Methane Was Observed. This Study Demonstrates the Importance of Mixing and its Critical Role in Design of Large-Scale Anaerobic Digesters. Copyright © 2006 by Humana Press Inc. All Rights of Any Nature Whatsoever Reserved

    Mesophilic Digestion Kinetics of Manure Slurry

    Get PDF
    Anaerobic Digestion Kinetics Study of Cow Manure Was Performed at 35°C in Bench-Scale Gas-Lift Digesters (3.78 L Working Volume) at Eight Different Volatile Solids (VS) Loading Rates in the Range of 1.11-5.87 G L-1 Day-1. the Digesters Produced Methane at the Rates of 0.44-1.18 L L-1 Day-1, and the Methane Content of the Biogas Was Found to Increase with Longer Hydraulic Retention Time (HRT). based on the Experimental Observations, the Ultimate Methane Yield and the Specific Methane Productivity Were Estimated to Be 0.42 L CH4 (G vs. Loaded)-1 and 0.45 L CH4 (G vs. Consumed)-1, Respectively. Total and Dissolved Chemical Oxygen Demand (COD) Consumptions Were Calculated to Be 59-17% and 78-43% at 24.4-4.6 Days HRTs, respectively. Maximum Concentration of Volatile Fatty Acids in the Effluent Was Observed as 0.7 G L-1 at 4.6 Days HRT, While It Was Below Detection Limit at HRTs Longer Than 11 Days. the Observed Methane Production Rate Did Not Compare Well with the Predictions of Chen and Hashimoto\u27s [1] and Hill\u27s [2] Models using their Recommended Kinetic Parameters. However, under the Studied Experimental Conditions, the Predictions of Chen and Hashimoto\u27s [1] Model Compared Better to the Observed Data Than that of Hill\u27s [2] Model. the Nonlinear Regression Analysis of the Experimental Data Was Performed using a Derived Methane Production Rate Model, for a Completely Mixed Anaerobic Digester, Involving Contois Kinetics [3] with Endogenous Decay. the Best Fit Values for the Maximum Specific Growth Rate (Μm) and Dimensionless Kinetic Parameter (K) Were Estimated as 0.43 Day-1 and 0.89, Respectively. the Experimental Data Were Found to Be within 95% Confidence Interval of the Prediction of the Derived Methane Production Rate Model with the Sum of Residual Squared Error as 0.02. © Humana Press Inc. 2007

    Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant?

    Get PDF
    The expansion of genome sequencing projects has produced accumulating evidence for lateral transfer of genes between prokaryotic and eukaryotic genomes. However, it remains controversial whether these genes are of functional importance in their recipient host. Nikoh and Nakabachi, in a recent paper in BMC Biology, take a first step and show that two genes of bacterial origin are highly expressed in the pea aphid Acyrthosiphon pisum. Active gene expression of transferred genes is supported by three other recent studies. Future studies should reveal whether functional proteins are produced and whether and how these are targeted to the appropriate compartment. We argue that the transfer of genes between host and symbiont may occasionally be of great evolutionary importance, particularly in the evolution of the symbiotic interaction itself

    Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in <it>E. coli </it>had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in <it>E. coli</it>.</p> <p>Results</p> <p>An expression plasmid containing the open reading frame for tung tree (<it>Vernicia fordii</it>) DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in <it>E. coli </it>BL21(DE3). Immunoblotting showed that the recombinant DGAT1 (rDGAT1) was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification.</p> <p>Conclusions</p> <p>This study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.</p

    Circulating neurofilament light in ischemic stroke: temporal profile and outcome prediction

    Get PDF
    BACKGROUND AND PURPOSE: Neurofilament light chain (NfL) is a marker of neuroaxonal damage. We aimed to study associations between serum NfL (sNfL) concentrations at different time points after ischemic stroke and outcomes. // METHODS: We prospectively included ischemic stroke cases (n = 595, mean age 59 years, 64% males) and assessed outcomes by both the modified Rankin Scale (mRS) and the NIH stroke scale (NIHSS) at 3 months and by mRS at 2 years. In a subsample, long-term (7-year) outcomes were also assessed by both mRS and NIHSS. We used the ultrasensitive single-molecule array assay to measure sNfL in the acute phase (range 1-14, median 4 days), after 3 months and 7 years in cases and once in controls (n = 595). // RESULTS: Acute-phase sNfL increased by the time to blood-draw and highest concentrations were observed at 3 months post-stroke. High sNfL associated to stroke severity and poor outcomes, and both associations were strongest for 3-month sNfL. After adjusting for age, previous stroke, stroke severity, and day of blood draw, 3-month sNfL was significantly associated to both outcomes at all time points (p < 0.01 throughout). For all main etiological subtypes, both acute phase and 3-month sNfL were significantly higher than in controls, but the dynamics of sNfL differed by stroke subtype. // CONCLUSIONS: The results from this study inform on sNfL in ischemic stroke and subtypes over time, and show that sNfL predicts short- and long-term neurological and functional outcomes. Our findings suggest a potential utility of sNfL in ischemic stroke outcome prediction

    TCF21 hypermethylation regulates renal tumor cell clonogenic proliferation and migration

    Get PDF
    We recently identified hypermethylation at the gene promoter of transcription factor 21 (TCF21) in clear cell sarcoma of the kidney (CCSK), a rare pediatric renal tumor. TCF21 is a transcription factor involved in tubular epithelial development of the kidney and is a candidate tumor suppressor. As there are no in vitro models of CCSK, we employed a well-established clear cell renal cell carcinoma (ccRCC) cell line, 786-O, which also manifests high methylation at the TCF21 promoter, with consequent low TCF21 expression. The tumor suppressor function of TCF21 has not been functionally addressed in ccRCC cells; we aimed to explore the functional potential of TCF21 expression in ccRCC cells in vitro. 786-O clones stably transfected with either pBABE-TCF21-HA construct or pBABE vector alone were functionally analyzed. We found that ectopic expression of TCF21 in 786-O cells results in a trend toward decreased cell proliferation (not significant) and significantly decreased migration compared with mock-transfected 786-O cells. Although the number of colonies established in colony formation assays was not different between 786-O clones, colony size was significantly reduced in 786-O cells expressing TCF21. To investigate whether the changes in migration were due to epithelial-to-mesenchymal transition changes, we interrogated the expression of selected epithelial and mesenchymal markers. Although we observed upregulation of mRNA and protein levels of epithelial marker E-cadherin in clones overexpressing TCF21, this did not result in surface expression of E-cadherin as measured by fluorescence-activated cell sorting and immunofluorescence. Furthermore, mRNA expression of the mesenchymal markers vimentin (VIM) and SNAI1 was not significantly decreased in TCF21-expressing 786-O cells, while protein levels of VIM were markedly decreased. We conclude that re-expression of TCF21 in renal cancer cells that have silenced their endogenous TCF21 locus through hypermethylation results in reduced clonogenic proliferation, reduced migration, and reduced mesenchymal-like characteristics, suggesting a tumor suppressor function for transcription factor 21

    A bacterial genome in transition - an exceptional enrichment of IS elements but lack of evidence for recent transposition in the symbiont Amoebophilus asiaticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont <it>Amoebophilus asiaticus </it>contains an unusually large number of transposase genes (n = 354; 23% of all genes).</p> <p>Results</p> <p>The transposase genes in the <it>A. asiaticus </it>genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the <it>A. asiaticus </it>genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of <it>A. asiaticus </it>are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the <it>A. asiaticus </it>genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction.</p> <p>Conclusions</p> <p>Taken together, the IS elements in the <it>A. asiaticus </it>genome are currently in the process of degradation and largely represent reflections of the evolutionary past of <it>A. asiaticus </it>in which its genome was shaped by their activity.</p

    CO2 dissolution and design aspects of a multiorifice oscillatory baffled column

    Get PDF
    Dissolution of CO2 in water was studied for a batch vertical multiorifice baffled column (MOBC) with varying orifice diameters (d0) of 6.4-30 mm and baffle open area (α) of 15-42%. Bubble size distributions (BSDs) and the overall volumetric CO2 mass transfer coefficient (KLa) were experimentally evaluated for very low superficial gas velocities, UG of 0.12-0.81 mm s-1, using 5% v/v CO2 in the inlet gas stream at a range of fluid oscillations (f = 0-10 Hz and x0 = 0-10 mm). Remarkably, baffles presenting large do = 30 mm and α = 36%, therefore in the range typically found for single-orifice oscillatory baffled columns, were outperformed with respect to BSD control and CO2 dissolution by the other baffle designs or the same aerated column operating without baffles or fluid oscillations. Flow visualization and bubble tracking experiments also presented in this study established that a small do of 10.5 mm combined with a small value of α = 15% generates sufficient, strong eddy mixing capable of generating and trapping an extremely large fraction of microbubbles in the MOBC. This resulted in increased interfacial area yielding KLa values up to 65 ± 12 h-1 in the range of the UG tested, representing up to 3-fold increase in the rate of CO2 dissolution when compared to the unbaffled, steady column. In addition, a modi fied oscillatory Reynolds number, Re′o and Strouhal number, St' were presented to assist on the design and scale-up of gas-liquid systems based on multiorifice oscillatory ba ffled columns. This work is relevant to gas-liquid or multiphase chemical and biological systems relying on efficient dissolution of gaseous compounds into a liquid medium.BBSRC -European Commissio

    Evolutionary Genomics of a Temperate Bacteriophage in an Obligate Intracellular Bacteria (Wolbachia)

    Get PDF
    Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal transfer such as mobile elements. For example, the temperate double-stranded DNA bacteriophage WO in Wolbachia persistently transfers between bacterial coinfections in the same host. Here we show that despite the phage's rampant mobility between coinfections, the prophage's genome displays features of constraint related to its intracellular niche. First, there is always at least one intact prophage WO and usually several degenerate, independently-acquired WO prophages in each Wolbachia genome. Second, while the prophage genomes are modular in composition with genes of similar function grouping together, the modules are generally not interchangeable with other unrelated phages and thus do not evolve by the Modular Theory. Third, there is an unusual core genome that strictly consists of head and baseplate genes; other gene modules are frequently deleted. Fourth, the prophage recombinases are diverse and there is no conserved integration sequence. Finally, the molecular evolutionary forces acting on prophage WO are point mutation, intragenic recombination, deletion, and purifying selection. Taken together, these analyses indicate that while lateral transfer of phage WO is pervasive between Wolbachia with occasional new gene uptake, constraints of the intracellular niche obstruct extensive mixture between WO and the global phage population. Although the Modular Theory has long been considered the paradigm of temperate bacteriophage evolution in free-living bacteria, it appears irrelevant in phages of obligate intracellular bacteria
    corecore