3,873 research outputs found
Heavy quark action on the anisotropic lattice
We investigate the improved quark action on anisotropic lattice as a
potential framework for the heavy quark, which may enable precision computation
of hadronic matrix elements of heavy-light mesons. The relativity relations of
heavy-light mesons as well as of heavy quarkonium are examined on a quenched
lattice with spatial lattice cutoff 1.6 GeV and the
anisotropy . We find that the bare anisotropy parameter tuned for the
massless quark describes both the heavy-heavy and heavy-light mesons within 2%
accuracy for the quark mass , which covers the charm quark
mass. This bare anisotropy parameter also successfully describes the
heavy-light mesons in the quark mass region within the
same accuracy. Beyond this region, the discretization effects seem to grow
gradually. The anisotropic lattice is expected to extend by a factor the
quark mass region in which the parameters in the action tuned for the massless
limit are applicable for heavy-light systems with well controlled systematic
errors.Comment: 11 pages, REVTeX4, 11 eps figure
Latitudinal gradients of galactic cosmic rays during the 2007 solar minimum
Ulysses, launched in 1990 October in the maximum phase of solar cycle 22, completed its third out-of-ecliptic orbit in 2008 February. This provides a unique opportunity to study the propagation of cosmic rays over a wide range of heliographic latitudes during different levels of solar activity and different polarities in the inner heliosphere. Comparison of the first and second fast latitude scans from 1994 to 1995 and from 2000 to 2001 confirmed the expectation of positive latitudinal gradients at solar minimum versus an isotropic Galactic cosmic ray distribution at solar maximum. During the second scan in mid-2000, the solar magnetic field reversed its global polarity. From 2007 to 2008, Ulysses made its third fast latitude scan during the declining phase of solar cycle 23. Therefore, the solar activity is comparable in 2007-2008 to that from 1994 to 1995, but the magnetic polarity is opposite. Thus, one would expect to compare positive with negative latitudinal gradients during these two periods for protons and electrons, respectively. In contrast, our analysis of data from the Kiel Electron Telescope aboard Ulysses results in no significant latitudinal gradients for protons. However, the electrons show, as expected, a positive latitudinal gradient of ~0.2% per degree. Although our result is surprising, the nearly isotropic distribution of protons in 2007-2008 is consistent with an isotropic distribution of electrons from 1994 to 1995
Material Modeling and Microstructural Optimization of Dielectric Elastomer Actuators
The modeling and 3D numerical implementation of dielectric elastomer actuators are discussed in this work. The electromechanical coupling for the actuator is realized via the Maxwell stress in the mechanical balance. In this nonlinear numerical problem the consistent tangent matrix, which is used for the Newton iterations, is described in detail. The operational curve of a homogeneous capacitor structure is compared to analytical solutions by implementing the Neo-Hooke and the Yeoh material model in the numerical simulations respectively. In this simulations the instability aspects of this type of structure is discussed. Furthermore the optimization of the operational curve is analyzed for both material models through the consideration of inclusion materials in the elastomer structure. Piezoceramic and a soft material inclusions with a fiber and a spherical geometry are considered. The results show the capability of improving the operational curves of the actuator with these inhomogeneities
Evolution of Plastic Strain During a Flow Forming Process
The distribution of equivalent plastic strain through the thickness of
several AISI 1020 steel plates formed under different conditions over a smooth
cylindrical mandrel using a single-roller forward flow forming operation was
studied by measuring the local micro-indentation hardness of the deformed
material. The equivalent plastic strain was higher at the inner and outer
surfaces and lowest at the center of the workpiece. Empirical expressions are
presented which describe the contribution of the roller and mandrel to the
total local equivalent plastic strain within the flow formed part. The
dependence of these expressions upon the thickness reduction during flow
forming is discussed.Comment: 13 pages, 9 figure
Quenched charmonium spectrum on anisotropic lattices
We present the results of quenched charmonium spectrum for S- and P-states,
obtained by a relativistic heavy quark method on anisotropic lattices.
Simulations are carried out using the standard plaquette gauge action and a
meanfield-improved clover quark action at --6 GeV with the
renormalized anisotropy fixed to . We study the scaling
of our fine and hyperfine mass splittings, and compare with previous results.Comment: Lattice 2000 (Heavy Quark Physics), 4 pages, 6 eps figures,
LaTeX(espcrc2.sty
Numerical study of O(a) improved Wilson quark action on anisotropic lattice
The improved Wilson quark action on the anisotropic lattice is
investigated. We carry out numerical simulations in the quenched approximation
at three values of lattice spacing (--2 GeV) with the
anisotropy , where and are
the spatial and the temporal lattice spacings, respectively. The bare
anisotropy in the quark field action is numerically tuned by the
dispersion relation of mesons so that the renormalized fermionic anisotropy
coincides with that of gauge field. This calibration of bare anisotropy is
performed to the level of 1 % statistical accuracy in the quark mass region
below the charm quark mass. The systematic uncertainty in the calibration is
estimated by comparing the results from different types of dispersion
relations, which results in 3 % on our coarsest lattice and tends to vanish in
the continuum limit. In the chiral limit, there is an additional systematic
uncertainty of 1 % from the chiral extrapolation.
Taking the central value from the result of the
calibration, we compute the light hadron spectrum. Our hadron spectrum is
consistent with the result by UKQCD Collaboration on the isotropic lattice. We
also study the response of the hadron spectrum to the change of anisotropic
parameter, . We find that the change
of by 2 % induces a change of 1 % in the spectrum for physical quark
masses. Thus the systematic uncertainty on the anisotropic lattice, as well as
the statistical one, is under control.Comment: 27 pages, 25 eps figures, LaTe
- …