501 research outputs found
Recommended from our members
Regulation of mTOR Signaling by Semaphorin 3F-Neuropilin 2 Interactions In Vitro and In Vivo
Semaphorin 3F (SEMA3F) provides neuronal guidance cues via its ability to bind neuropilin 2 (NRP2) and Plexin A family molecules. Recent studies indicate that SEMA3F has biological effects in other cell types, however its mechanism(s) of function is poorly understood. Here, we analyze SEMA3F-NRP2 signaling responses in human endothelial, T cell and tumor cells using phosphokinase arrays, immunoprecipitation and Western blot analyses. Consistently, SEMA3F inhibits PI-3K and Akt activity, and responses are associated with the disruption of mTOR/rictor assembly and mTOR-dependent activation of the RhoA GTPase. We also find that the expression of vascular endothelial growth factor, as well as mTOR-inducible cellular activation responses and cytoskeleton stability are inhibited by SEMA3F-NRP2 interactions in vitro. In vivo, local and systemic overproduction of SEMA3F reduces tumor growth in NRP2-expressing xenografts. Taken together, SEMA3F regulates mTOR signaling in diverse human cell types, suggesting that it has broad therapeutic implications
Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis
Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory cells. We found that tumor-associated adipocytes also contribute to inflammation. We have analyzed peritumoral adipose tissue in a syngeneic mouse melanoma model. Compared to control adipose tissue, adipose tissue juxtaposed to implanted tumors exhibited reduced adipocyte size, extensive fibrosis, increased angiogenesis and a dense macrophage infiltrate. A mouse cytokine protein array revealed up-regulation of inflammatory mediators including IL-6, CXCL1, MCP-1, MIP-2 and TIMP-1 in peritumoral versus counterpart adipose tissues. CD11b+ macrophages contributed strongly to the inflammatory activity. These macrophages were isolated from peritumoral adipose tissue and found to overexpress ARG1, NOS2, CD301, CD163, MCP-1 and VEGF, which are indicative of both M1 and M2 polarization. Tumors implanted at a site distant from subcutaneous, anterior adipose tissue were strongly growth-delayed, had fewer blood vessels and were less populated by CD11b+ macrophages. In contrast to normal adipose tissue, micro-dissected peritumoral adipose tissue explants launched numerous vascular sprouts when cultured in an ex vivo model. Thus, inflamed tumor-associated adipose tissue fuels the growth of malignant cells by acting as a proximate source for vascular endothelium and activated pro-inflammatory cells, in particular macrophages
FGFR4 Arg388 allele correlates with tumour thickness and FGFR4 protein expression with survival of melanoma patients
A single nucleotide polymorphism in the gene for FGFR4 (βArg388) has been associated with progression in various types of human cancer. Although fibroblast growth factors (FGFs) belong to the most important growth factors in melanoma, expression of FGF receptor subtype 4 has not been investigated yet. In this study, the protein expression of this receptor was analysed in 137 melanoma tissues of different progression stages by immunohistochemistry. FGFR4 protein was expressed in 45% of the specimens and correlated with pTNM tumour stages (UICC, P=0.023 and AJCC, P=0.046), presence of microulceration (P=0.009), tumour vascularity (P=0.001), metastases (P=0.025), number of primary tumours (P=0.022), overall survival (P=0.047) and disease-free survival (P=0.024). Furthermore, FGFR4 Arg388 polymorphism was analysed in 185 melanoma patients by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The Arg388 allele was detected in 45% of the melanoma patients and was significantly associated with tumour thickness (by Clark's level of invasion (P=0.004) and by Breslow in mm (P=0.02)) and the tumour subtype nodular melanoma (P=0.002). However, there was no correlation of the FGFR4 Arg388 allele with overall and disease-free survival. In conclusion, the Arg388 genotype and the protein expression of FGFR4 may be potential markers for progression of melanoma
Semaphorin 3A Suppresses Tumor Growth and Metastasis in Mice Melanoma Model
<div><h3>Background</h3><p>Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation.</p> <h3>Methodology/Principal Findings</h3><p>In this study, using multiple <em>in vitro</em> and <em>in vivo</em> approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor <em>in vitro</em> and <em>in vivo</em> mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of <em>in vivo</em> tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents.</p> <h3>Conclusions</h3><p>Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.</p> </div
A Class III Semaphorin (Sema3e) Inhibits Mouse Osteoblast Migration and Decreases Osteoclast Formation In Vitro
Originally identified as axonal guidance cues, semaphorins are expressed throughout many different tissues and regulate numerous non-neuronal processes. We demonstrate that most class III semaphorins are expressed in mouse osteoblasts and are differentially regulated by cell growth and differentiation: Sema3d expression is increased and Sema3e expression decreased during proliferation in culture, while expression of Sema3a is unaffected by cell density but increases in cultures of mineralizing osteoblasts. Expression of Sema3a, -3e, and -3d is also differentially regulated by osteogenic stimuli; inhibition of GSK3Ξ² decreased expression of Sema3a and -3e, while 1,25-(OH)2D3 increased expression of Sema3e. Parathyroid hormone had no effect on expression of Sema3a, -3b, or -3d. Osteoblasts, macrophages, and osteoclasts express the Sema3e receptor PlexinD1, suggesting an autocrine and paracrine role for Sema3e. No effects of recombinant Sema3e on osteoblast proliferation, differentiation, or mineralization were observed; but Sema3e did inhibit the migration of osteoblasts in a wound-healing assay. The formation of multinucleated, tartrate-resistant acid phosphataseβpositive osteoclasts was decreased by 81% in cultures of mouse bone marrow macrophages incubated with 200Β ng/mL Sema3e. Correspondingly, decreased expression of osteoclast markers (Itgb3, Acp5, Cd51, Nfatc1, CalcR, and Ctsk) was observed by qPCR in macrophage cultures differentiated in the presence of Sema3e. Our results demonstrate that class III semaphorins are expressed by osteoblasts and differentially regulated by differentiation, mineralization, and osteogenic stimuli. Sema3e is a novel inhibitor of osteoclast formation in vitro and may play a role in maintaining local bone homeostasis, potentially acting as a coupling factor between osteoclasts and osteoblasts
New Model of Macrophage Acquisition of the Lymphatic Endothelial Phenotype
Macrophage-derived lymphatic endothelial cell progenitors (M-LECPs) contribute to new lymphatic vessel formation, but the mechanisms regulating their differentiation, recruitment, and function are poorly understood. Detailed characterization of M-LECPs is limited by low frequency in vivo and lack of model systems allowing in-depth molecular analyses in vitro. Our goal was to establish a cell culture model to characterize inflammation-induced macrophage-to-LECP differentiation under controlled conditions.Time-course analysis of diaphragms from lipopolysaccharide (LPS)-treated mice revealed rapid mobilization of bone marrow-derived and peritoneal macrophages to the proximity of lymphatic vessels followed by widespread (βΌ50%) incorporation of M-LECPs into the inflamed lymphatic vasculature. A differentiation shift toward the lymphatic phenotype was found in three LPS-induced subsets of activated macrophages that were positive for VEGFR-3 and many other lymphatic-specific markers. VEGFR-3 was strongly elevated in the early stage of macrophage transition to LECPs but undetectable in M-LECPs prior to vascular integration. Similar transient pattern of VEGFR-3 expression was found in RAW264.7 macrophages activated by LPS in vitro. Activated RAW264.7 cells co-expressed VEGF-C that induced an autocrine signaling loop as indicated by VEGFR-3 phosphorylation inhibited by a soluble receptor. LPS-activated RAW264.7 macrophages also showed a 68% overlap with endogenous CD11b(+)/VEGFR-3(+) LECPs in the expression of lymphatic-specific genes. Moreover, when injected into LPS- but not saline-treated mice, GFP-tagged RAW264.7 cells massively infiltrated the inflamed diaphragm followed by integration into 18% of lymphatic vessels.We present a new model for macrophage-LECP differentiation based on LPS activation of cultured RAW264.7 cells. This system designated here as the "RAW model" mimics fundamental features of endogenous M-LECPs. Unlike native LECPs, this model is unrestricted by cell numbers, heterogeneity of population, and ability to change genetic composition for experimental purposes. As such, this model can provide a valuable tool for understanding the LECP and lymphatic biology
Chlamydia trachomatis Co-opts the FGF2 Signaling Pathway to Enhance Infection
The molecular details of Chlamydia trachomatis binding, entry, and spread are incompletely understood, but heparan sulfate proteoglycans (HSPGs) play a role in the initial binding steps. As cell surface HSPGs facilitate the interactions of many growth factors with their receptors, we investigated the role of HSPG-dependent growth factors in C. trachomatis infection. Here, we report a novel finding that Fibroblast Growth Factor 2 (FGF2) is necessary and sufficient to enhance C. trachomatis binding to host cells in an HSPG-dependent manner. FGF2 binds directly to elementary bodies (EBs) where it may function as a bridging molecule to facilitate interactions of EBs with the FGF receptor (FGFR) on the cell surface. Upon EB binding, FGFR is activated locally and contributes to bacterial uptake into non-phagocytic cells. We further show that C. trachomatis infection stimulates fgf2 transcription and enhances production and release of FGF2 through a pathway that requires bacterial protein synthesis and activation of the Erk1/2 signaling pathway but that is independent of FGFR activation. Intracellular replication of the bacteria results in host proteosome-mediated degradation of the high molecular weight (HMW) isoforms of FGF2 and increased amounts of the low molecular weight (LMW) isoforms, which are released upon host cell death. Finally, we demonstrate the in vivo relevance of these findings by showing that conditioned medium from C. trachomatis infected cells is enriched for LMW FGF2, accounting for its ability to enhance C. trachomatis infectivity in additional rounds of infection. Together, these results demonstrate that C. trachomatis utilizes multiple mechanisms to co-opt the host cell FGF2 pathway to enhance bacterial infection and spread
Recommended from our members
Semaphorin 3F forms an anti-angiogenic barrier in outer retina
Semaphorins are known modulators of axonal sprouting and angiogenesis. In the retina, we identified a distinct and almost exclusive expression of Semaphorin 3F in the outer layers. Interestingly, these outer retinal layers are physiologically avascular. Using functional in vitro models, we report potent anti-angiogenic effects of Semaphorin 3F on both retinal and choroidal vessels. In addition, human retinal pigment epithelium isolates from patients with pathologic neovascularization of the outer retina displayed reduced Semaphorin 3F expression in 10 out of 15 patients. Combined, these results elucidate a functional role for Semaphorin 3F in the outer retina where it acts as a vasorepulsive cue to maintain physiologic avascularity
Overexpression of neuropilin-1 promotes constitutive MAPK signalling and chemoresistance in pancreatic cancer cells
Neuropilin-1 (NRP-1) is a novel co-receptor for vascular endothelial growth factor (VEGF). Neuropilin-1 is expressed in pancreatic cancer, but not in nonmalignant pancreatic tissue. We hypothesised that NRP-1 expression by pancreatic cancer cells contributes to the malignant phenotype. To determine the role of NRP-1 in pancreatic cancer, NRP-1 was stably transfected into the human pancreatic cancer cell line FG. Signal transduction was assessed by Western blot analysis. Susceptibility to anoikis (detachment induced apoptosis) was evaluated by colony formation after growth in suspension. Chemosensitivity to gemcitabine or 5-fluorouracil (5-FU) was assessed by MTT assay in pancreatic cancer cells following NRP-1 overexpression or siRNA-induced downregulation of NRP-1. Differential expression of apoptosis-related genes was determined by gene array and further evaluated by Western blot analysis. Neuropilin-1 overexpression increased constitutive mitogen activated protein kinase (MAPK) signalling, possibly via an autocrine loop. Neuropilin-1 overexpression in FG cells enhanced anoikis resistance and increased survival of cells by >30% after exposure to clinically relevant levels of gemcitabine and 5-FU. In contrast, downregulation of NRP-1 expression in Panc-1 cells markedly increased chemosensitivity, inducing >50% more cell death at clinically relevant concentrations of gemcitabine. Neuropilin-1 overexpression also increased expression of the antiapoptotic regulator, MCL-1. Neuropilin-1 overexpression in pancreatic cancer cell lines is associated with (a) increased constitutive MAPK signalling, (b) inhibition of anoikis, and (c) chemoresistance. Targeting NRP-1 in pancreatic cancer cells may downregulate survival signalling pathways and increase sensitivity to chemotherapy
- β¦