19 research outputs found

    Improved efficiency with adaptive front and rear axle independently driven powertrain and disconnect functionality

    Get PDF
    Front and rear axle independently driven (FRID) powertrains are becoming a popular solution for electric vehicles (EVs) due to torque distribution capability which can enhance powertrain energy efficiency. Typically, permanent magnet synchronous machines (PMSMs) are used for FRID powertrains due to their high torque, and power density. However, the drive-cycle efficiency of FRID powertrains with PMSMs is typically reduced in comparison to single motor drives. This is due to the unwanted no-load losses of PMSMs in the field weakening region. To overcome this drawback of PMSM FRIDs, this paper proposes an adaptive front- and rear-axle independently driven (AFRID) powertrain, utilizing two dog clutches, so that the powertrain can be operated in different modes (rear, front, and all-wheel drive) by adaptively connecting and disconnecting the front and/or rear electric drive unit (EDU). A rule-based mode selection strategy is developed to utilize the flexibility of different powertrain operating modes of the powertrain for maximizing the energy efficiency of the EDU. The simulation results show that the suggested AFRID powertrain, in comparison to a common FRID powertrain, can improve the WLTC drive-cycle consumption from 22.17 kWhh to 20.50 kWhh per 100 km. Based on the route and road-load information, the energy-saving potential of the AFRID powertrain can be further improved to 20.37 kWhh per 100 km by a suggested predictive mode selection strategy, achieving an optimal mode selection

    H-2 dissociation over Ag/Al2O3: the first step in hydrogen assisted selective catalytic reduction of NOx

    No full text
    Hydrogen assisted selective catalytic reduction of NOx over Ag/Al2O3 with either hydrocarbons or ammonia as reducing agents is an emerging technology for lean NOx reduction. Herein, we present a density functional theory study of H-2 dissociation over a representative set of sites present on the Ag/Al2O3 catalyst. Whereas H-2 dissociation over supported Ag ions and oxidized Ag surfaces is found to be facile, dissociation over metallic Ag, defect free Al2O3 and alumina-supported Ag is associated with high barriers. The results are rationalized by analysis of the electronic structure

    Low temperature CO oxidation over supported ultrathin MgO films

    No full text
    Density functional theory is used to investigate CO oxidation over an ultrathin MgO film supported on Ag(100). O-2 is found to be activated on MgO/Ag(100) whereas CO is only weakly bonded to the surface. These adsorption properties together with a low activation barrier render the MgO/Ag system an efficient catalyst for CO oxidation at low temperatures. As the predicted mechanism is general in nature, the result is suggested to have implications for a wide range of oxidation reactions

    Influence of surface pinning points on diffusion of adsorbed lipid vesicles

    No full text
    Using a simple model of a vesicle and a substrate, we have studied surface diffusion of an adsorbed vesicle. We show that the experimentally observed but unexplained fact, that a neutral (POPC) vesicle adsorbed to a SiO2 or mica surface does not diffuse but can be moved laterally by an atomic force microscope (AFM) t, without rupture, can be explained by transient (i.e., temporary) pinning of lipid head groups to surface charges. We studied the surface diffusion for different vesicle adsorption strengths (without any pinning taking place), with the observation that stronger vesicle-surface attraction leads to slower surface diffusion. However, the surface diffusion was still significant and too high to explain the experimentally observed immobility. When allowing transient lipid pinning between the vesicle and the , a 1-2 orders of magnitude decrease in the surface diffusion coefficient was observed. For a lipid adsorption potential of around 20 kB-T and a lipid pinning potential of about 25 kB-T, the vesicle is found to be practically immobile on the surface

    Maximizing Efficiency in Smart Adjustable DC Link Powertrains with IGBTs and SiC MOSFETs via Optimized DC-Link Voltage Control

    Get PDF
    In recent years, the push towards electrifying transportation has gained significant traction, with battery-electric vehicles (BEVs) emerging as a viable alternative. However, the widespread adoption of BEVs faces multiple challenges, such as limited driving range, making powertrain efficiency improvements crucial. One approach to improve powertrain energy efficiency is to adjust the DC-link voltage using a DC-DC converter between the battery and inverter. Here, it is necessary to address the losses introduced by the DC-DC converter. This paper presents a dynamic programming approach to optimize the DC-link voltage, taking into account the battery terminal voltage variation and its impact on the overall powertrain losses. We also examine the energy efficiency gains of IGBT-based and silicon carbide (SiC) MOSFET-based adjustable DC-link voltage powertrains during WLTC driving cycles through PLECS and Matlab/Simulink simulations. The findings indicate that both IGBT and MOSFET-based adjustable DC-link voltage powertrains can enhance the WLTC drive-cycle efficiency up to 2.51% and 3.25% compared to conventional IGBT and MOSFET-based powertrains, respectively
    corecore