14 research outputs found

    Нейроендокринний супровід поліваріантних ефектів біоактивної води Нафтуся на рівень хронічного стресу у жінок з різним оваріальним статусом

    Get PDF
    Проанализированы изменения нейроэндокринных показателен, сопутствующие поливариантным эффектам биоактивной воды Нафтуся курорта Трускавец на уровень хронического стресса у женщин детородного возраста с различным овариальным статусом. Обнаружена значительная (R=0,59) каноническая корреляционная связь между динамикой нейро-гормонального индекса стресса, с одной стороны, и вегетативной реактивности, лютеинизирующего гормона, тиреотропного гормона, тироксина и прогестерона - с другой стороны.The changes in neuroendocrine parameters, concomitant multivariate effects of bioactive water Naftussya spa Truskavets to the level of chronic stress in women of childbearing age with different ovarian status. A significant (R=0,59) canonical correlation between the dynamics of the neuro-hormonal index of stress, on the one hand, and autonomic reactivity, luteinizing hormone, thyroid-stimulating hormone, thyroxine and progesterone - the other side

    Surgical resection and radiofrequency ablation initiate cancer in cytokeratin-19(+)- liver cells deficient for p53 and Rb

    Get PDF
    The long term prognosis of liver cancer patients remains unsatisfactory because of cancer recurrence after surgical interventions, particularly in patients with viral infections. Since hepatitis B and C viral proteins lead to inactivation of the tumor suppressors p53 and Retinoblastoma (Rb), we hypothesize that surgery in the context of p53/Rb inactivation initiate de novo tumorigenesis. We, therefore, generated transgenic mice with hepatocyte and cholangiocyte/liver progenitor cell (LPC)-specific deletion of p53 and Rb, by interbreeding conditional p53/Rb knockout mice with either Albumin-cre or Cytokeratin-19-cre transgenic mice. We show that liver cancer develops at the necrotic injury site after surgical resection or radiofrequency ablation in p53/Rb deficient livers. Cancer initiation occurs as a result of specific migration, expansion and transformation of cytokeratin-19+-liver (CK-19+) cells. At the injury site migrating CK-19+ cells formed small bile ducts and adjacent cells strongly expressed the transforming growth factor β (TGFβ). Isolated cytokeratin-19+ cells deficient for p53/Rb were resistant against hypoxia and TGFβ-mediated growth inhibition. CK-19+ specific deletion of p53/Rb verified that carcinomas at the injury site originates from cholangiocytes or liver progenitor cells. These findings suggest that human liver patients with hepatitis B and C viral infection or with mutations for p53 and Rb are at high risk to develop tumors at the surgical intervention site

    Surgery-induced tumor growth in (metastatic) colorectal cancer

    No full text
    Metastatic colorectal cancer (mCRC) is a devastating disease causing 700.000 deaths annually worldwide. Metastases most frequently develop in the liver. Partial hepatectomy has dramatically improved clinical outcome and is the only curative treatment option for eligible patients with mCRC. Pre-clinical studies have shown that surgical procedures can have tumor-promoting local 'side-effects’ such as hypoxia and inflammation, thereby altering the behaviour of residual tumor cells. In addition, systemically released factors following (colon or liver) surgery can act as a wakeup-call for dormant tumor cells in distant organs and/or help establish a pre-metastatic niche. Tumor handling during resection may also increase the number of circulating tumor cells. Despite the overwhelming amount of pre-clinical data demonstrating the pro-tumorigenic side effects of surgery, clinical evidence is scarce. Indications for hepatic surgery are rapidly increasing due to a rise in the incidence of mCRC and a trend towards more aggressive surgical treatment. Therefore, it is increasingly important to understand the principles of surgery-induced tumor growth, in order to devise perioperative or adjuvant strategies to further enhance long-term tumor control. In the current study we review the evidence for surgery-stimulated tumor growth and suggest strategies to assess the clinical relevance of such findings

    Multipolar radiofrequency ablation for colorectal liver metastases close to major hepatic vessels

    No full text
    Background: Resection of colorectal liver metastases (CRLM) is often hindered by their location close to the major hepatic vessels. So far, radiofrequency ablation for perivascular tumours was thought to be ineffective and unsafe due to either the heat sink effect or vascular thrombosis. The aim of this study was to examine whether RFA using multipolar probes could be a safe and effective option for CRLM adjacent to major hepatic vessels. Methods: Patients were treated with multipolar RFA during an open procedure using 3 simultaneously placed electrodes. In 52 consecutive patients with CRLM, 144 tumours were ablated with RFA. In 16 out of 52 (31%) patients, metastases were abutting major hepatic vessels. We examined whether perivascular location was a risk factor for local tumour progression. The relation between perivascular location and time to local tumour progression and recurrence free survival was assessed using cox-regression analysis. Results: All patients were followed for at least 3 years after RFA unless they deceased before this time. Local tumour progression following RFA occurred in 17 out of 144 tumours (12%), of which 4 out of 21 were perivascular tumours. Tumour size was the only risk factor for local tumour progression in this study. Proximity to large vessels was neither a risk factor for local local tumour progression, nor for time to local tumour progression or recurrence free survival. Discussion: This study indicates that patients with CRLM abutting any of the large hepatic vessels can be safe and effectively treated with RFA when using a multipolar system

    Maintenance of Clonogenic KIT+ Human Colon Tumor Cells Requires Secretion of Stem Cell Factor by Differentiated Tumor Cells

    No full text
    Background & Aims Colon tumors contain a fraction of undifferentiated stem cell-like cancer cells with high tumorigenic potential. Little is known about the signals that maintain these stem-like cells. We investigated whether differentiated tumor cells provide support. Methods We established undifferentiated colonosphere cultures from human colon tumors and used them to generate stably differentiated cell lines. Antibody arrays were used to identify secreted factors. Expression of genes involved in stemness, differentiation, and the epithelial to mesenchymal transition was measured using reverse transcription quantitative polymerase chain reaction. Expression of KIT in human tumors was analyzed with gene expression arrays and by immunohistochemistry. Colonospheres were injected into the livers of CBy.Cg-Foxn1nu/J mice. After liver tumors had formed, hypoxia was induced by vascular clamping. Results Differentiated cells from various tumors, or medium conditioned by them, increased the clonogenic capacity of colonospheres. Stem cell factor (SCF) was secreted by differentiated tumor cells and supported the clonogenic capacity of KIT+ colonosphere cells. Differentiated tumor cells induced the epithelial to mesenchymal transition in colonosperes; this was prevented by inhibition of KIT or SCF. SCF prevented loss of clonogenic potential under differentiation-inducing conditions. Suppression of SCF or KIT signaling greatly reduced the expression of genes that regulate stemness and the epithelial to mesenchymal transition and inhibited clonogenicity and tumor initiation. Bioinformatic and immunohistochemical analyses revealed a correlation between expression of KIT- and hypoxia-related genes in colon tumors, which was highest in relapse-prone mesenchymal-type tumors. Hypoxia induced expression of KIT in cultured cells and in human colon tumor xenografts and this contributed to the clonogenic capacity of the tumor cells. Conclusions Paracrine signaling from SCF to KIT, between differentiated tumor cells and undifferentiated stem-like tumor cells, helps maintain the stem-like features of tumor cells, predominantly under conditions of hypoxia

    Downregulation of DNA repair proteins and increased DNA damage in hypoxic colon cancer cells is a therapeutically exploitable vulnerability

    No full text
    Surgical removal of colorectal cancer (CRC) liver metastases generates areas of tissue hypoxia. Hypoxia imposes a stem-like phenotype on residual tumor cells and promotes tumor recurrence. Moreover, in primary CRC, gene expression signatures reflecting hypoxia and a stem-like phenotype are highly expressed in the aggressive Consensus Molecular Subtype 4 (CMS4). Therapeutic strategies eliminating hypoxic stem-like cells may limit recurrence following resection of primary tumors or metastases. Here we show that expression of DNA repair genes is strongly suppressed in CMS4 and inversely correlated with hypoxia-inducible factor-1 alpha (HIF1α) and HIF-2α co-expression signatures. Tumors with high expression of HIF signatures and low expression of repair proteins showed the worst survival. In human tumors, expression of the repair proteins RAD51, KU70 and RIF1 was strongly suppressed in hypoxic peri-necrotic tumor areas. Experimentally induced hypoxia in patient derived colonospheres in vitro or in vivo (through vascular clamping) was sufficient to downregulate repair protein expression and caused DNA damage. Hypoxia-induced DNA damage was prevented by expressing the hydroperoxide-scavenging enzyme glutathione peroxidase-2 (GPx2), indicating that reactive oxygen species mediate hypoxia-induced DNA damage. Finally, the hypoxia-activated prodrug Tirapazamine greatly augmented DNA damage and reduced the fraction of stem-like (Aldefluorbright) tumor cells in vitro, and in vivo following vascular clamping. We conclude that decreased expression of DNA repair proteins and increased DNA damage in hypoxic tumor areas may be therapeutically exploited with hypoxia-activated prodrugs, and that such drugs reduce the fraction of Aldefluorbright (stem-like) tumor cells

    GPx2 suppression of H2O2 stress links the formation of differentiated tumor mass to metastatic capacity in colorectal cancer

    No full text
    Colorectal tumorigenesis is accompanied by the generation of oxidative stress, but how this controls tumor development is poorly understood. Here, we studied how the H2O2-reducing enzyme glutathione peroxidase 2 (GPx2) regulates H2O2 stress and differentiation in patient-derived "colonosphere" cultures. GPx2 silencing caused accumulation of radical oxygen species, sensitization to H2O2-induced apoptosis, and strongly reduced clone- and metastasis-forming capacity. Neutralization of radical oxygen species restored clonogenic capacity. Surprisingly, GPx2-suppressed cells also lacked differentiation potential and formed slow-growing undifferentiated tumors. GPx2 overexpression stimulated multilineage differentiation, proliferation, and tumor growth without reducing the tumor-initiating capacity. Finally, GPx2 expression was inversely correlated with H2O2-stress signatures in human colon tumor cohorts, but positively correlated with differentiation and proliferation. Moreover, high GPx2 expression was associated with early tumor recurrence, particularly in the recently identified aggressive subtype of human colon cancer. We conclude that H2O2 neutralization by GPx2 is essential for maintaining clonogenic and metastatic capacity, but also for the generation of differentiated proliferating tumor mass. The results reveal an unexpected redox-controlled link between tumor mass formation and metastatic capacit
    corecore